Закономерность распределения простых чисел в ряду натуральных чисел

Исследование роли простых чисел в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Определение закономерность распределения простых чисел в ряду натуральных чисел. Составление системы комбинаций арифметических прогрессий.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 30.03.2017
Размер файла 640,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Закономерность распределения простых чисел в ряду натуральных чисел.

Белотелов В.А.

г. Заволжье 2008г.

Простые числа? - Это просто

Узнав о важной роли простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании и о том, что нужна закономерность распределения ПЧ в ряду натуральных чисел, не являясь математиком, всё же рискнул заняться решением этой задачи. Результат ниже.

Для начала выписал ряд ПЧ. Конечно же, это было сделано с целью заметить, хоть какую бы, закономерность. С этой же целью были вычислены разности между соседними числами ряда ПЧ. Было замечено, что иногда появлялась последовательность разностей 6-4-2-4-2-4-6-2. Там, где эта последовательность нарушалась, были введены составные числа (СЧ). Результат представлен в таблице 1, СЧ в которой подчёркнуты. Числа 2, 3, 5, являясь ПЧ, из рассмотрения всё же были убраны. Это первое исключение из правил. Вторая вольность заключалась введением в рассмотрение числа 1, зная, что единица не является простым числом.

Целью же было найти закономерность среди ПЧ + СЧ, а потом уже найти закономерность среди ПЧ. Стратегия поиска закономерности ПЧ заключалась в следующей логической формуле:

(закономерность ПЧ+СЧ) - (закономерность СЧ) = закономерность ПЧ.

Из ПЧ + СЧ, представленных в таблице 1, была составлена система из восьми арифметических прогрессий. Результат представлен в таблице 2.

Разности всех восьми прогрессий равны 30 и их первые члены равны соответственно 1, 7, 11, 13, 17, 19, 23, 29, а сами ряды обозначены через R1, R7,R11, R13, R17, R19, R23, R29. СЧ, как и в таблице 1, подчёркнуты и сверху расписаны в виде произведений двух чисел. Можно сформулировать правило, по которому в любой из восьми арифметических прогрессий распределены СЧ.

Если в арифметической прогрессии, какой - либо член an можно представить в виде двух сомножителей fxp, то последующие члены этой прогрессии an+mf являются произведением fx(p+md), а члены an+kp произведением px(f+kd), где m и k любые натуральные числа, а d - разность этой прогрессии.

Данное правило не нуждается в доказательстве, т.к. фактически следует из определения арифметической прогрессии. Но для объяснения закономерности ПЧ имеет большое значение. Во - первых, оно запрещает поиск рядов ПЧ, подчиняющихся одной арифметической прогрессии, т.к. любое простое число an можно представить в виде anх1, и тогда в любом ряде через число членов an, появляется составное число anх(1+d).

Во - вторых, в любой арифметической прогрессии появление дополнительных составных чисел возможно только в сочетании с разностью именно этой прогрессии.

Это правило можно сформулировать для любого числа сомножителей, но в данном случае интерес представляет число сомножителей равное двум.

В качестве примера рассмотрим в ряде R1 четвёртый член равный 91=7х13. Ближайшим членом в ряде R1 кратным семи является число 301, отстоящее от числа 91 на семь номеров, соответственно, число 301 принадлежит ряду СЧ. Число 301 является произведением 7х43 (301=7х43), и с номера этого числа равного 11, каждое сорок третье число, тоже делится на 43 и, соответственно, принадлежит к ряду СЧ. Дальше это можно не описывать, т.к. это хорошо видно в таблице 2.

Расписав таблицу 2 в виде математических символов, удалось получить систему из восьми формул, расписанных в виде разности сумм, см. таблицу 3. Во всех восьми формулах системы, члены с рядами двойных сумм служат фильтрами, удаляющими СЧ из ряда ПЧ+СЧ, и задают работу фильтров в виде матриц. В таблице 4 изображено распределение номеров СЧ в ряде R1, определяемых вторым членом формулы. Это матрица, в которой и по столбцам и по строкам арифметические прогрессии.

В формулах индексы и обозначают столбцы и строки подобных матриц, сами же и дополнительными индексами не отягощаю. Без и описать работу матриц не смог, а формальная фраза, что в выражении под суммой произведений подразумеваются всевозможные их комбинации в зависимости от значений a1 и с1, будет неверна. Ибо все члены с номерами при >1 и >1 из формулы выпадают.

Система формул арифметических прогрессий, позволяющая вычислять ПЧ, получилась достаточно громоздкой, но закономерность обозначена.

Данная статья была подготовлена для публикации в научном журнале с математическим уклоном. Пока шёл поиск данного журнала, путём несложных умозаключений, была составлена система рядов арифметических прогрессий с разностью 10. Результат в таблице 5 и 6. Всё было расписано по образцу и подобию предыдущего материала. В таблице 7 изображена матрица для номеров второго члена формулы 1 таблицы 6.

Не начав переписывать статью заново, в связи с открытием новой системы уравнений, опять же путём размышлений, были расписаны арифметические прогрессии с разностью 2 и 1, т.е. при разности единица ПЧ были напрямую увязаны с натуральным рядом. Результат в таблице 8 и 9.

Всё расписано, как и в случаях с системами уравнений арифметических прогрессий разностей 30 и 10. И после этого наступил момент истины.

Оказалось, что подобных уравнений можно составить бесконечное множество. Это арифметические прогрессии с разностью 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 … 30 …. .

Интереса ради, расписана система арифметических прогрессий с d = 6 .

В таблице 10 изображены матрицы номеров этой системы.

Обобщающий вывод

ПЧ можно представить комбинацией арифметических прогрессий. Таких комбинаций бесконечное множество. Но каждая из комбинаций систем арифметических прогрессий позволяет только единственное представление ПЧ при заданной разности прогрессий задающей ряды ПЧ+СЧ.

Если в значения переменных двойных сумм вставить их аналитические выражения через переменные и - столбцы и строки матриц, получатся формулы самих СЧ.

Тогда формула любого члена матриц СЧ таблицы 4, примет вид (30I - 17) (30j - 23).

Аналогично для таблицы 7- (10I - 3) (10 j - 7).

Для таблицы 8, ряда нечётных чисел - (2I + 1) (2 j + 1).

Для таблицы 9, ряда натуральных чисел - (I + 1) ( j + 1).

Заостряю внимание на том факте, что это уже не номера членов СЧ в рядах ПЧ + СЧ, а численные значения этих номеров. И подобных уравнений СЧ можно составить по числу систем арифметических прогрессий, и даже значительно больше, т.е. бесконечное множество.

Для наглядности можно расписать уравнения таблицы 3 в символах и . Результат в таблице 11.

И предлагаю рассмотреть, для сравнения, формулы для вычисления составного числа 91 в различных системах арифметических прогрессий.

В системе c d = 30 число 91 - это (30- 17) (30- 23), при = 1, = 1.

В системе c d = 10 это же число - (10- 3) (10- 7), при = 2, = 1.

В системе c d = 6 - (6+ 1) (6+ 1), при = 1, = 2.

В системе c d = 4 - (4- 1) (4+ 1), при = 2, = 3.

В системе c d = 2 - (2+ 1) (2+ 1), при = 3, = 6.

В системе c d = 1 - (+ 1) (+1), при = 6, = 12.

простой число натуральный прогрессия

Приложение

Таблица 1

1

7

11

13

17

19

23

29

31

37

41

43

47

49

53

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

61

67

71

73

77

79

83

89

91

97

101

103

107

109

113

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

121

127

131

133

137

139

143

149

151

157

161

163

167

169

173

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

181

187

191

193

197

199

203

209

211

217

221

223

227

229

233

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

241

247

251

253

257

259

263

269

271

277

281

283

287

289

293

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

301

307

311

313

317

319

323

329

331

337

341

343

347

349

353

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

361

367

371

373

377

379

383

389

391

397

401

403

407

409

413

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

421

427

431

433

437

439

443

449

451

457

461

463

467

469

473

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

481

487

491

493

497

499

503

509

511

517

521

523

527

529

533

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

541

547

551

553

557

559

563

569

571

577

581

583

587

589

593

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

601

607

611

613

617

619

623

629

631

637

641

643

647

649

653

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

661

667

671

673

677

679

683

689

691

697

701

703

707

709

713

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

721

727

731

733

737

739

743

749

751

757

761

763

767

769

773

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

Таблица 2

Таблица 3

Таблица 4

Таблица 5

Таблица 6

Таблица 7

Размещено на Allbest.ru

...

Подобные документы

  • Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди

    доклад [217,0 K], добавлен 21.01.2009

  • Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа [27,8 K], добавлен 24.12.2010

  • Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

    статья [406,8 K], добавлен 28.03.2012

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Поиски и доказательства простоты чисел Мерсенна. Окончание простых чисел Мерсенна на цифру 1 и 7. Вопрос сужения диапазона поиска. Эффективный алгоритм Миллера-Рабина. Разделение алгоритмов на вероятностные и детерминированные. Числа джойнт ряда.

    статья [127,5 K], добавлен 28.03.2012

  • Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.

    реферат [22,8 K], добавлен 22.03.2016

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.

    контрольная работа [66,0 K], добавлен 05.10.2010

  • Числа натурального ряда, их закономерное периодическое изменение: сведение бесконечного к конечному путем выявления периодичности. Обоснование метода поиска простых чисел с помощью "решета" Баяндина. Закон динамического сохранения относительных величин.

    книга [359,0 K], добавлен 28.03.2012

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция [268,6 K], добавлен 07.05.2013

  • Разработка индийскими математиками метода, позволяющего быстро находить простое число. Биография Эратосфена - греческого математика, астронома, географа и поэта. Признаки делимости чисел. Решето Эратосфена как алгоритм нахождения всех простых чисел.

    практическая работа [12,2 K], добавлен 09.12.2009

  • Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

    курсовая работа [8,2 M], добавлен 14.09.2015

  • Первая таблица простых чисел, составленная математиком Эратосфеном. Периодические цикады как род цикад с 13- и 17-летними жизненными циклами, распространенных в Северной Америки. Принцип действия кредитной карты. Закономерности и свойства простых чисел.

    научная работа [25,8 K], добавлен 28.01.2014

  • Свойства дзета-функции Римана для действительного аргумента. Дзета-функцию как функция мнимого аргумента. Дзета-функция Римана широко применяется в математическом анализе, в теории чисел, в изучении распределения простых чисел в натуральном ряду.

    курсовая работа [263,2 K], добавлен 29.05.2006

  • Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.

    презентация [422,7 K], добавлен 02.06.2013

  • Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.

    курсовая работа [79,8 K], добавлен 27.07.2015

  • Изучение основных определений и теорем, связанных с полукольцом натуральных чисел, описание его нулевого, главного и двухпорожденного идеалов. Исследование проблемы нахождения констант Фробениуса для аддитивной полугруппы, порожденной линейной формой.

    курсовая работа [370,2 K], добавлен 12.06.2010

  • Збагачення запасу чисел, введення ірраціональних чисел. Зведення комплексних чисел у ступінь і знаходження кореня. Окремий випадок формули Муавра. Труднощі при витягу кореня з комплексних чисел. Витяг квадратного кореня із негативного дійсного числа.

    курсовая работа [130,8 K], добавлен 26.03.2009

  • Способы получения псевдослучайных чисел. Общая характеристика генератора псевдослучайных чисел фон Неймана. Сущность равномерного закона распределения. Понятие о критериях согласия. Анализ критериев Пирсона и Колмогорова.

    курсовая работа [176,9 K], добавлен 28.04.2010

  • Изучение основных подгрупп алгоритмов проверки простоты больших чисел: детерминированные и вероятностные проверки. Исследование методов генерации и проверки на простоту больших чисел с помощью метода Ферма (малая теорема Ферма), составление программы.

    лабораторная работа [11,7 K], добавлен 27.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.