Основы теории вероятности

Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 30.03.2017
Размер файла 23,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

В данной работе мы рассмотрим разнообразные математические термины, классическое определение вероятности, потому что они развивают логическое мышление человека.

Итак, мы дадим определение случайным событиям, познакомимся с вероятностью событий, узнаем классическое определение вероятности и относительную частоту, заострим внимание на ограниченности классического определения, приведем примеры вычисления вероятностей и сделаем выводы о проделанной работе.

1. Виды случайных событий

Выше событие названо случайным, если при осуществлении определенной совокупности условий «S» оно может либо произойти, либо не произойти. В дальнейшем, вместо того чтобы говорить «совокупность условий «S» осуществлена», будем говорить кратко: «произведено испытание». Таким образом, событие будет рассматриваться как результат испытания.

Например, стрелок стреляет по мишени, разделенной на четыре области. Выстрел - это испытание. Попадание в определенную область мишени - событие.

События называют несовместным, если появление одного из них исключает появление других событий в одном и том же испытании.

Пример. Брошена монета. Появление «герба» исключает появление надписи. События «появился герб» и «появилась надпись» - несовместные.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

Пример. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Пример. Появление «герба» и появление надписи при бросании монеты - равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму, и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.

Пример. Появление того или иного числа очков на брошенной игральной кости - равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника, и наличие очков не оказывает влияния на выпадение любой грани.

вероятность случайный событие

2. Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной шар (т.е. красный или синий) больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

Поставим перед собой задачу дать количественную опенку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события «А». Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Элементарные исходы обозначим через w1, w2, w3 и т.д. В нашем примере возможны следующие шесть элементарных исходов: w1 - появился белый шар; w2, w3 - появился красный шар; w4, w5, w6 - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию «А» (появлению цветного шара) следующие пять исходов: w2, w3, w4, w5, w6.

Таким образом, событие «А» наблюдается, если в испытании наступает один, безразлично какой из элементарных исходов, благоприятствующих «А».В нашем примере «А» наблюдается, если наступит w2, или w3, w4, или w5, или w6. В этом смысле событие «А» подразделяется на несколько элементарных событий (w2, w3, w4, w5, w6).Элементарное же событие не подразделяется на другие события. В этом состоит различие между событием «А» и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию «А» элементарных исходов к их общему числу называют вероятностью события «А» и обозначают через Р(А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию «А». Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (А) = 5/6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события «А» называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события «А» определяется формулой:

Р(А) = m\n,

где m - число элементарных исходов, благоприятствующих «А», n - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу.

3. Свойства вероятности

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n последовательно,

Р(А) = m\n= n\n= 1.

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Р(А) = m\n= 0\n= 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m< n, значит, 0 < m\n< 1, следовательно,

0 <Р(А) < 1.

Итак, вероятность любого события удовлетворяет двойному неравенству:

0 < или = Р(А) < или = 1.

Замечание. Современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Ограничимся изложением на языке теории множеств тех понятий, которые рассмотрены выше.

Пусть в результате испытания наступает одно и только одно из событий Wi (i=1, 2,…, n). События Wi - называют элементарными событиями (элементарными исходами). Уже отсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называют пространством элементарных событий «Q», а сами элементарные события - точками пространства «Q».

Событие «А» отождествляют с подмножеством (пространства Q), элементы которого есть элементарные исходы, благоприятствующие «А».Событие «В» есть подмножество «Q», элементы которого есть исходы благоприятствующие «В» и т.д. Таким образом, множество всех событий, которые могут наступить в испытании, есть множество всех подмножеств «Q». Само «Q» наступает при любом исходе испытания, поэтому «Q» - достоверное событие; пустое подмножество пространства «Q» - невозможное событие (оно не наступает ни при каком исходе испытания).

Заметим, что элементарные события выделяются из числа всех событий тем, что каждое из них содержит только один элемент «Q».

Каждому элементарному исходу Wi ставят в соответствие положительное число Pi - вероятность этого исхода, причем сумма Pi (по i) = 1.

По определению, вероятность Р(А) события «А» равна сумме вероятностей элементарных исходов, благоприятствующих «А». Отсюда легко получить, что вероятность события достоверного равна единице, невозможного - нулю, произвольного - заключена между нулем и единицей.

Рассмотрим важный частный случай, когда все исходы равновозможны. Число исходов равно «n», сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1/n. Пусть событию «А» благоприятствует «m» исходов. Вероятность события «А» равна сумме вероятностей исходов, благоприятствующих «А»:

P(A)=1/n+ 1/n+ 1/n.

Учитывая, что число слагаемых равно «m», имеем:

Р(А) = m\n.

Получено классическое определение вероятности.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных исходов которых бесконечно. В таких случаях классическое определение неприменимо. Уже это обстоятельство указывает на ограниченность классического определения. Отмеченный недостаток может быть преодолен, в частности, введением геометрических вероятностей и, конечно, использованием аксиоматической вероятности.

Наиболее слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. Обычно о равновозможности элементарных исходов испытания говорят из соображений симметрии. Так, например, предполагают, что игральная кость имеет форму правильного многогранника (куба) и изготовлена из однородного материала. Однако задачи, в которых можно исходить из соображений симметрии, на практике встречаются весьма редко. По этой причине наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение. В качестве статистической вероятности события принимают относительную частоту или число, близкое к ней. Например, если в результате достаточно большого числа испытаний оказалось, что относительная частота весьма близка к числу 0,4, то это число можно принять за статистическую вероятность события.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности. Действительно, если событие достоверно, то m=nи относительная частота:

m\n= n\n= 1,

т.е. статистическая вероятность достоверного события (так же как и в случае классического определения) равна единице.

Если событие невозможно, то m=0 и, следовательно, относительная частота0/n=0, т.е. статистическая вероятность невозможного события равна нулю.

Для любого события 0 < или = m < или = n и, следовательно, относительная частота0 < или = m/ n < или =1, т.е. статистическая вероятность любого события заключена между нулем и единицей.

Для существования статистической вероятности события «А» требуется:

а) возможность, хотя бы принципиально, производить неограниченно число испытаний, в каждом из которых событие «А» наступает или не наступает;

б) устойчивость относительных частот появления «А» в различных сериях достаточно большого числа испытаний.

Недостатком статистического определения является неоднозначность статистической вероятности; так как в качестве вероятности события можно принять не только 0,4, но и 0,39; 0,41 и т.д.

4. Относительная частота события

Относительной частотой события «А» называют отношение числа испытаний «m», в которых данное событие появилось, к общему числу «n» фактически проведённых испытаний:

W(A)=m/n, или короче: w=m/n

Относительная частота наряду с вероятностью является одним из ключевых понятий «Тервера», но если классическоелибо геометрическое определение вероятностине требуют проведения испытаний, то относительная частота рассчитывается исключительно после опытов на основе фактически полученных данных.

В том случае, если серии испытаний проводятся в неизменных условиях, то относительная частота обнаруживает свойство устойчивости, то есть колеблется около определённого значения.

Пусть некий профессиональный стрелок произвёл 100 выстрелов по мишени и попал 83 раза. Тогда относительная частота поражения цели составит:

w=83/100=0,83.

Предположим, что тот же самый стрелок в точно такой же «форме» и в приблизительно таких же условиях снова провёл серию из 100 выстрелов. Вероятно ли, что он снова попадёт 83 раза? Не очень. Но количество попаданий вряд ли будет сильно отличаться от предыдущего результата. Пусть, например, стрелок попал 79 раз. Тогда относительная частота поражения цели составит:

w =79/100=0,79.

В третьей серии из 100 выстрелов, проведённой при похожих обстоятельствах, данный стрелок попал 81 раз:

w=81/100=0,81и т.д.

Иногда могут случаться блестящие серии более 90 попаданий, иногда «провалы», но среднее количество попаданий будет варьироваться около 80-ти. И когда количество фактически проведённых испытаний станет достаточно большим, то речь зайдёт о статистической вероятности. Если в одинаковых (примерно одинаковых) условиях проведено достаточно много испытаний, то за статистическую вероятностьсобытия принимают относительную частоту данного события либо близкое число.

Предположим, что на протяжении нескольких лет наш спортсмен, сохраняя стабильный уровень подготовки, совершил 10000 выстрелов и попал 8037 раз. Относительная частота поражения цели составит: w=8037/10000=0,8037

и за статистическую вероятность его результативности целесообразно принятьp=0,8, которая становится теоретической оценкой, например, перед грядущими соревнованиями.

Именно так собирается богатая спортивная статистика в различных видах спорта.

5. Примеры вычисления вероятностей

Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение. Обозначим через «А» событие - набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию «А» лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов: Р (А) =1/10.

Пример 2. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

Решение. Обозначим через «В» событие - набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т.е. А210 = 10х9 = 90. Таким образом, общее число возможных элементарных исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию «В» лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Р (В) = 1/90.

Пример 3. Указать ошибку «решения» задачи: Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие «А»).

Решение. Всего возможны два исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию «А» благоприятствует один исход: общее число исходов равно двум. Следовательно, искомая вероятность:

Р (А) =1/2.

Ошибка этого решения состоит в том, что рассматриваемые исходы не являются равновозможными.

Правильное решение. Общее число равновозможных исходов испытания равно 6х6=36 (каждое число выпавших очков на одной кости может сочетаться со всеми числами очков другой кости). Среди этих исходов благоприятствуют событию «А» только три исхода: (1; 3), (3; 1), (2; 2) (в скобках указаны числа выпавших очков). Следовательно, искомая вероятность:

Р (А) = 3/36 = 1/12.

Пример 4. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.

Решение. Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т.е. числу сочетаний из 10 элементов по 6 элементов (C610).

Определим число исходов, благоприятствующих интересующему нас событию «А» (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять из семи стандартных деталей С47способами; при этом остальные 6 -4 =2 детали должны быть нестандартными; взять же две нестандартные детали из 10 - 7 = 3 нестандартных деталей можно С23 способами. Следовательно, число благоприятствующих исходов равно: С47х С23.

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Р (А) = (С4723) / С610 = Ѕ.

Заключение

Итак, подводя итог вышесказанному, подчеркнем следующее. Случайным событием называется событие, при определенных условиях может либо произойти, либо не произойти. Эти события могут многократно наблюдаться при осуществлении одних и тех же условий. Так вот теория вероятностей как раз и изучает вероятностные закономерности массовых однородных событий.

Существует несколько определений вероятности. Классическое определение вероятности связано с понятием благоприятствующего исхода. Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события. Вероятностью же события называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу (о том, что такое полная группа мы говорили ранее). Это определение имеет свой недостаток, потому что в нем подразумевается, что число элементарных исходов испытания конечно. На практике же часто встречаются испытания, число возможных исходов которых бесконечно, с этим и связано другое определение - статистическое, при котором события принимают относительную частоту или число, близкое к ней.

При вычислении вероятностей используют определенные формулы. Например, перестановки, размещения или сочетания. С помощью этих формул можно произвести многие вычисления вероятностей и решить любую задачу, что мы и сделали выше.

Список использованной литературы

1. Информатика и математика для юристов / Под ред. Х.А. Андриашина и др. - М.: ЮНИТИ - ДАНА, 2003.

2. Виленкин И.В., Гробер В.М. Высшая математика для студентов экономических, технических и естественно-научных специальностей вузов. Ростов - на - Дону: Феникс, 2004. - 416 с.;

3. Гмурман В.Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов / В.Е. Гмурман - М.: Высшая школа, 2003. - 479 с.;

4. Высшая математика для экономистов / Под ред. Н.Ш. Кремера и др. - М.: Биржи и банки, 1998 - 356 с.;

5. Общий курс высшей математики для экономистов: Учебник / под ред. В.И. Ермакова. - М.: ИНФРА - М, 2005. - 656 с. - (Высшее образование).

Размещено на Allbest.ru

...

Подобные документы

  • Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.

    задача [82,0 K], добавлен 12.02.2011

  • Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

    задача [104,1 K], добавлен 14.01.2011

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа [328,1 K], добавлен 18.11.2011

  • Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.

    контрольная работа [157,5 K], добавлен 04.02.2012

  • Изучение закономерностей массовых случайных явлений. Степень взаимосвязи теории вероятностей и статистики. Невозможные, возможные и достоверные события. Статистическое, классическое, геометрическое, аксиоматическое определение вероятности. Формула Бейеса.

    реферат [114,7 K], добавлен 08.05.2011

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка [777,8 K], добавлен 24.12.2010

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа [89,7 K], добавлен 07.09.2010

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка [945,2 K], добавлен 18.06.2012

  • История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.

    контрольная работа [22,6 K], добавлен 20.12.2009

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка [328,7 K], добавлен 04.05.2015

  • Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.

    контрольная работа [309,4 K], добавлен 18.09.2010

  • Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.

    презентация [77,5 K], добавлен 01.11.2013

  • Порядок определения степени вероятности нахождения значения из десяти возможных. Методика вычисления стандартных деталей среди проверенных с вероятностью 0.95. Оценка вероятности подъема в цене акций предприятия, а также получения прибыли на бирже.

    контрольная работа [42,2 K], добавлен 16.10.2011

  • Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.

    реферат [42,6 K], добавлен 24.04.2009

  • Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.

    лекция [287,5 K], добавлен 02.04.2008

  • Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.

    реферат [402,7 K], добавлен 03.12.2007

  • Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.

    презентация [1,4 M], добавлен 19.07.2015

  • Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.

    контрольная работа [480,0 K], добавлен 29.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.