Математическая статистика в медицине

Значение математики для медицинского работника. Статистическое оценивание и проверка статистических гипотез. Процесс проведения кластерного анализа, сущность и возможное использование математических методов работниками медицины и здравоохранения.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 11.04.2017
Размер файла 19,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат на тему:

Математическая статистика в медицине

Работу выполнил:

Курбанов К. М.

Ставрополь,2017г.

Содержание

Введение

1. Значение математики для медицинского работника

2. Математические методы

3. Статистическая совокупность

4. Статистическое оценивание

5. Проверка статистических гипотез

6. Кластерный анализ

Заключение

Список литературы

Введение

Математика -- наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика -- фундаментальная наука, предоставляющая языковые средства другим наукам. Выдающийся итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564-1642) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической философии Иммануил Кант (1742-1804) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практически уже в наше время, немецкий математик и логик Давид Гильберт (1862-1943) констатировал: "Математика - основа всего точного естествознания".

1. Значение математики для медицинского работника

В настоящее время, согласно требованиям государственных стандартов и действующих программ обучения в медицинских учреждениях, основной задачей изучения дисциплины "Математика" является вооружение студентов математическими знаниями и умениями, необходимыми для изучения специальных дисциплин базового уровня, а в требованиях к профессиональной подготовленности специалиста заявлено умение решать профессиональные задачи с использованием математических методов. Такое положение не может не сказываться на результатах математической подготовки медиков. От этих результатов в определённой степени зависит уровень профессиональной компетентности медперсонала. Данные результаты показывают, что, изучая математику, в дальнейшем медработники приобретают те или иные профессионально-значимые качества и умения, а также применяют математические понятия и методы в медицинской науке и практике. Профессиональная направленность математической подготовки в медицинских образовательных учреждениях должна обеспечивать повышение уровня математической компетентности студентов-медиков, осознание ценности математики для будущей профессиональной деятельности, развитие профессионально значимых качеств и приёмов умственной деятельности, освоение студентами математического аппарата, позволяющего моделировать, анализировать и решать элементарные математические профессионально значимые задачи, имеющие место в медицинской науке и практике, обеспечивая преемственность формирования математической культуры студентов от первого к старшим курсам и воспитание потребности в совершенствовании знаний в области математики и её приложений.

2. Математические методы

Математические методы в медицине-совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне. Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете. Так, многие явления физики, химии, техники описываются М.м. достаточно полно. В результате эти науки достигли высокой степени теоретических обобщений. В биологических науках М.м. пока еще играют подчиненную роль из-за сложности объектов, процессов и явлений, вариабельности их характеристики, наличия индивидуальных особенностей. Систематические попытки использовать М.м. в биомедицинских направлениях начались в 80-х гг. 19 в. Общая идея корреляции, выдвинутая английским психологом и антропологом Гальтоном (F. Galton) и усовершенствованная английским биологом и математиком Пирсоном (К. Pearson), возникла как результат попыток обработки биомедицинских данных. Точно так же из попыток решить биологические проблемы родились известные методы прикладной статистики. До настоящего времени методы математической статистики являются ведущими М.м. для биомедицинских наук. Начиная с 40-х гг. 20 в. математические методы проникают в медицину и биологию через кибернетику и информатику. Наиболее развиты М.м. в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения). Описание проводят в двух основных направлениях. Для обработки биомедицинских данных используют различные методы математической статистики, выбор одного из которых в каждом конкретном случае основывается на характере распределения анализируемых данных. Эти методы предназначены для выявления закономерностей, свойственных биомедицинским объектам, поиска сходства и различий между отдельными группами объектов, оценки влияния на них разнообразных внешних факторов и т.п. На основе определенной гипотезы о типе распределения изучаемых данных в серии наблюдений и использования соответствующего математического аппарата с той или иной достоверностью устанавливаются свойства биомедицинских объектов, делаются практические выводы, даются рекомендации. Описания свойств объектов, получаемые с помощью методов математической статистики, называют иногда моделями данных. Модели данных не содержат какой-либо информации или гипотез о внутренней структуре реального объекта и опираются только на результаты инструментальных измерений. Статистические методы обработки стали привычным и широко распространенным аппаратом для работников медицины и здравоохранения. Существует несколько основных понятий, необходимых для эффективного использования методов современной многомерной статистики.

статистический математический медицина

3. Статистическая совокупность

Понятие, лежащее в основе всех статистических методов. Объекты, с которыми имеют дело в медицине, обладают большой вариабельностью -- их характеристики меняются во времени и пространстве в зависимости от многих факторов, а также существенно отличаются друг от друга, Характеристики таких объектов обычно представляют в виде матрицы наблюдений, где столбцы соответствуют различным признакам, а строки -- либо разным объектам, либо последовательным во времени наблюдениям за одним и тем же объектом. Из-за вариабельности измеряемых признаков приходится считать их значения случайными величинами и пользоваться вероятностными (стохастическими) постановками задач: матрица наблюдений является выборкой, или выборочной совокупностью случайных величин из некоторой генеральной совокупности. Сама генеральная совокупность обычно трактуется как множество всех объектов определенного типа или как совокупность всех возможных реализаций какого-либо явления. Основными задачами статистического исследования являются выявление и анализ закономерностей, присущих объектам в выборке, с целью установления возможности и достоверности перенесения сделанных выводов на генеральную совокупность. Признаки, характеризующие объекты в медицине и здравоохранении, подразделяются на количественные, порядковые и качественные. Для количественных признаков можно указать точную характеристику -- число (например, вес, рост, величина АД, данные анализов), Для порядковых признаков (ранговых, если каждой градации ставится в соответствие число -- ранг) точная характеристика невозможна, но можно указать степень выраженности соответствующего свойства (хрипы в легких -- единичные, множественные; интенсивность кашля -- слабая, средняя, сильная, очень сильная). Качественные признаки не поддаются упорядочиванию или ранжированию (цвет глаз -- голубой, серый, карий). Обычно объекты в биологии и медицине описываются множеством признаков одновременно. Набор учитываемых при исследовании признаков называется пространством признаков. Значения всех этих признаков для данного объекта однозначно определяют его положение как точку в пространстве признаков. Если признаки рассматриваются как случайные величины, то точка, описывающая состояние объекта, занимает в пространстве признаков случайное положение.

4. Статистическое оценивание

Применяют в медицинских исследованиях, когда получаемых данных недостаточно для установления вида функции распределения случайных величин. В этом случае предполагают, что реализуется один из законов распределения, а матрицу наблюдений используют для оценки параметров этого закона. Статистические оценки могут быть точечными или интервальными. В первом случае оценка дается в виде чисел (как правило, это среднее значение и дисперсия). Во втором случае определяется интервал, в котором исследуемая случайная величина находится с заданной вероятностью. Получаемые оценки должны относиться к генеральной совокупности. Интервальная оценка генерального среднего (математического ожидания) производится на основе распределения Стьюдента (при числе наблюдений не более 50--60) или на основе гипотезы о нормальном распределении (при большем числе наблюдений). Для оценки генеральной дисперсии применяется распределениеc. Интервал, в котором с заданной вероятностью находится генеральный параметр, называется доверительным интервалом, сама такая вероятность -- доверительной вероятностью. В медицинских исследованиях используют три порога доверительной вероятности b: 0,95; 0,99; 0,999. Чем точнее требуется результат, тем большим порогом задается исследователь и тем шире (при прочих равных условиях) получается доверительный интервал. В статистике наряду с понятием доверительной вероятности употребляется термин «уровень значимости». Соответственно применяются три уровня значимости 0,05; 0,01 и 0,001.

5. Проверка статистических гипотез

Используется чаще всего для определения принадлежности двух имеющихся выборок к одной и той же генеральной совокупности. Подобные задачи возникают, например, при анализе заболеваемости, эффективности лекарственных препаратов и т.п. Гипотеза о том, что обе выборки не различаются, т.е. принадлежат к одной генеральной совокупности, называется иногда нуль-гипотезой. Эта гипотеза принимается, если ее значимость, получаемая на основании статистических критериев, превышает допустимый порог (р > 0,95). Однако при р < 0,95 отвергнуть эту гипотезу нельзя: ответ остается неопределенным, и для получения окончательного вывода требуются дополнительные данные. Гипотеза отвергается в том случае, если ее значимость (вероятность правильности) становится меньше заданного стандартного порога. При проверке статистических гипотез используются параметрические и непараметрические критерии. В первом случае производится сравнение параметров двух выборочных распределений (средних и дисперсий) и делается заключение о равенстве или различии этих параметров в генеральных совокупностях. Гипотеза о равенстве средних значений проверяется по критерию Стьюдента, равенство дисперсий -- по критерию Фишера. Описание соответствующих процедур можно найти в любом пособии по математической статистике. В последние годы большую популярность приобрели непараметрические критерии (Уилкоксона, Колмогорова -- Смирнова и др.). Их достоинством является то, что они не содержат ограничений, вытекающих из гипотез о типе распределения случайных величин, а опираются на единый принцип -- непрерывности распределений. Эти критерии применимы и для анализа порядковых данных. Однако по сравнению с параметрическими методами они менее чувствительны к различиям в выборках. Чаще всего непараметрические критерии используются для сравнения эмпирического распределения с теоретическим, в частности при проверке имеющейся статистической совокупности на принадлежность к типу нормальных распределений.

6. Кластерный анализ

Группа методов статистической обработки, которая включает методы классификации объектов, в т.ч. автоматические, на основе их сходства. Кластерный анализ, как и факторный, «сжимает» информацию. Но если факторный анализ снижает размерность пространства признаков, то кластерный уменьшает число рассматриваемых объектов. Совокупность объектов разбивается на кластеры -- группы объектов, обладающие сходными свойствами, поэтому вместо всей группы можно рассматривать один объект, характеризующий ее. Так, ряд административных территорий может быть представлен в виде одного кластера, объединяющего регионы с одинаковой эпидемиологической обстановкой. Кластерный анализ включает методы, которые исходно не принимают во внимание вероятностную природу обрабатываемых данных. При постановке задач кластеризации число кластеров, на которое должно быть разбито исходное множество объектов, может задаваться заранее или выявляться в процессе решения. Алгоритмы кластерного анализа направлены на получение наилучшего в определенном смысле качества разбиения совокупности объектов на группы.

Заключение

Математика имеет почти такое же значение для остальных наук, как и логика. Роль математики заключается в построении и анализе количественных математических моделей, в также в исследовании структур, подчинённых формальным законам. Обработка и анализ экспериментальных результатов, построение гипотез и применение научных теорий в практической деятельности требует использования математики. Математика всем нужна. И медикам тоже, хотя бы для того, чтобы грамотно прочитать обычную кардиограмму. Без знания азов математики нельзя использовать возможности компьютерной томоргафии…Ведь современная медицина не может обходиться без сложнейшей техники. Когда-то математики пришли в медицину с наивным представлением, что они легко вникнут в наши симптомы и помогут улучшить диагностику. С появлением первых ЭВМ будущее представлялось просто замечательным: заложил в компьютер всю информацию о больном и получил такое, что врачу и не снилось. Казалось, что машина может всё. Но поле математики в медицине предстало огромным и невероятно сложным, а её участие в диагностике вовсе не простым перебором и компоновкой многих сотен лабораторных и инструментальных показателей.

Список литературы

1.Математическая статистика в медицине В. А. Медик, М. С. Токмачев (2007) 2.www.bibliofond.ru/view.aspx « Математика в медицине. Статистика»

3. Петров И.Б. Математическое моделирование в медицине и биологии на основе моделей механики сплошных сред // ТРУДЫ МФТИ, 2009, ТОМ 1, №1

Размещено на Allbest.ru

...

Подобные документы

  • Первичный анализ и основные характеристики статистических данных. Точечные оценки параметров распределения. Доверительные интервалы для неизвестного математического ожидания и для среднего квадратического отклонения. Проверка статистических гипотез.

    дипломная работа [850,9 K], добавлен 18.01.2016

  • Вероятностная модель и аксиоматика А.Н. Колмогорова. Случайные величины и векторы, классическая предельная проблема теории вероятностей. Первичная обработка статистических данных. Точечные оценки числовых характеристик. Статистическая проверка гипотез.

    методичка [433,3 K], добавлен 02.03.2010

  • Ознакомление с механизмом проверки гипотезы для случая единственной выборки, двух и нескольких независимых выборок. Проверка совпадений карт, выбор фильмов разных жанров. Обоснование результатов, полученных после проверки статистических гипотез.

    курсовая работа [726,2 K], добавлен 26.02.2015

  • Основные этапы обработки данных натуральных наблюдений методом математической статистики. Оценка полученных результатов, их использование при принятии управленческих решений в области охраны природы и природопользования. Проверка статистических гипотез.

    практическая работа [132,1 K], добавлен 24.05.2013

  • Математическая статистика как наука о математических методах систематизации статистических данных, ее показатели. Составление интегральных статистических распределений выборочной совокупности, построение гистограмм. Вычисление точечных оценок параметров.

    курсовая работа [241,3 K], добавлен 10.04.2011

  • Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Проверка статистических гипотез и выполнение центральной предельной теоремы для заданных последовательностей независимых случайных величин.

    курсовая работа [364,8 K], добавлен 13.11.2012

  • Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.

    контрольная работа [328,2 K], добавлен 07.12.2013

  • Описание способов нахождения коэффициентов регрессии модели полнофакторного эксперимента. Проверка многофакторных статистических гипотез на однородность ряда дисперсий, значимость и устойчивость математических коэффициентов множественной корреляции.

    контрольная работа [1,2 M], добавлен 05.08.2010

  • Методы регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений. Обзор задач математической статистики. Закон распределения случайной величины. Проверка правдоподобия гипотез.

    презентация [113,3 K], добавлен 01.11.2013

  • Понятие математической статистики как науки о математических методах систематизации и использования статистических данных для научных и практических выводов. Точечные оценки параметров статистических распределений. Анализ вычисления средних величин.

    курсовая работа [215,1 K], добавлен 13.12.2014

  • Формы, виды и способы статистического наблюдения. Виды группировок, их интервал и частота. Структура ряда динамики. Абсолютные и относительные статистические величины. Представление выборки в виде статистического ряда. Точечное и интервальное оценивание.

    курс лекций [1,1 M], добавлен 29.11.2013

  • Теория вероятностей и математическая статистика являются науками о методах количественного анализа массовых случайных явлений. Множество значений случайной величины называется выборкой, а элементы множества – выборочными значениями случайной величины.

    реферат [77,8 K], добавлен 26.12.2008

  • Предельные теоремы теории вероятностей. Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Закон больших чисел. Особенности проверки статистических гипотез (критерия согласия w2 Мизеса).

    курсовая работа [1,0 M], добавлен 27.01.2012

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

  • Определение закона распределения вероятностей результатов измерения в математической статистике. Проверка соответствия эмпирического распределения теоретическому. Определение доверительного интервала, в котором лежит значение измеряемой величины.

    курсовая работа [2,0 M], добавлен 11.02.2012

  • Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.

    курсовая работа [549,1 K], добавлен 07.08.2013

  • Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.

    курс лекций [1,1 M], добавлен 08.04.2011

  • Оценка необходимости настройки технологического процесса или ремонта и замены оборудования для обеспечения заданной точности по толщине металла. Определение количества замеров толщины стенки листа стали. Статистические особенности анализа доли брака.

    курсовая работа [126,4 K], добавлен 29.10.2012

  • Вероятность и ее общее определение. Теоремы сложения и умножения вероятностей. Дискретные случайные величины и их числовые характеристики. Закон больших чисел. Статистическое распределение выборки. Элементы корреляционного и регрессионного анализа.

    курс лекций [759,3 K], добавлен 13.06.2015

  • Определение вероятности, что машина с неисправной ходовой частью имеет также неисправный мотор. Методика вычисления дисперсии. Проверка статистических гипотез и дисперсионный анализ. Формирование контрольных карт, их содержание и принципы построения.

    курсовая работа [686,4 K], добавлен 31.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.