Метод Гаусса-Жордана

Нахождение обратной матрицы. Исследование системы линейных алгебраических уравнений на совместность. Нахождение координат вектора в заданном базисе. Метод элементарных преобразований и окаймляющих миноров. Способы нахождения ранга расширенной матрицы.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 17.04.2017
Размер файла 445,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Метод Гаусса-Жордана

Автор: Емелин Александр

Содержание

Введение

1. Нахождение обратной матрицы

2. Как найти ранг матрицы

3. Как исследовать систему линейных уравнений на совместность?

Введение

Метод Гаусса-Жордана -- используется для

· отыскания ранга матрицы,

· нахождения обратной матрицы,

· решения систем линейных алгебраических уравнений,

· нахождения координат вектора в заданном базисе.

Нахождение ранга матрицы

Для нахождения ее ранга нужно выполнить следующие действия.

1. Привести матрицу к ступенчатому виду .

2. В полученной матрице вычислить количество ненулевых строк.

3. Это число равно рангу матрицы

1. Нахождение обратной матрицы

1. Справа от исходной матрицы дописываем единичную матрицу.

2. Приводим исходную матрицу к единичной.

3. Справа на месте единичной получаем обратную.

Метод элементарных преобразований (методы Гаусса и Гаусса-Жордана для нахождения обратных матриц).

В первой части был рассмотрен способ нахождения обратной матрицы с помощью алгебраических дополнений. Здесь же мы опишем иной метод нахождения обратных матриц: с использованием преобразований метода Гаусса и Гаусса-Жордана. Зачастую этот метод нахождения обратной матрицы именуют методом элементарных преобразований.

Метод элементарных преобразований

Для применения этого метода в одну матрицу записывают заданную матрицу A и единичную матрицу E, т.е. составляют матрицу вида (A|E) (эту матрицу называют также расширенной). После этого с помощью элементарных преобразований, выполняемых со строками расширенной матрицы, добиваются того, что матрица слева от черты станет единичной, причём расширенная матрица примет вид (E|A?1). К элементарным преобразованиям в данной ситуации относят такие действия:

1. Смена мест двух строк.

2. Умножение всех элементов строки на некоторое число, не равное нулю.

3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

Применять указанные элементарные преобразования можно разными путями. Обычно выбирают метод Гаусса или метод Гаусса-Жордана. Вообще, методы Гаусса и Гаусса-Жордана предназначены для решения систем линейных алгебраических уравнений, а не для нахождения обратных матриц. Фразу "применение метода Гаусса для нахождения обратной матрицы" здесь нужно понимать как "применение операций, свойственных методу Гаусса, для нахождения обратной матрицы".

Нумерация примеров продолжена с первой части. В примерах №5 и №6 рассмотрено применение метода Гаусса для нахождения обратной матрицы, а в примерах №7 и №8 разобрано использование метода Гаусса-Жордана. Следует отметить, что если в ходе решения все элементы некоторой строки или столбца матрицы, расположенной до черты, обнулились, то обратной матрицы не существует.

Пример №5 Найти матрицу A?1, если

Решение

В этом примере будет найдена обратная матрица методом Гаусса. Расширенная матрица, имеющая в общем случае вид (A|E), в данном примере примет такую форму:

Цель: с помощью элементарных преобразований привести расширенную матрицу к виду (E|A?1). Применим те же операции, что применяются при решении систем линейных уравнений методом Гаусса-Жоржана получим:

Ответ:

Пример №6 Найти матрицу A?1, если

Ответ:

Пример №7 Найти матрицу A?1, если

После преобразований методом Гаусса-Жордана получена обратная матрица,

осталось лишь записать ответ.

Ответ:

Пример №8 Найти матрицу A?1, если

Ответ:

Примечание

Если в ходе решения диагональный элемент обнулился, то можно поменять местами строки.

2. Как найти ранг матрицы

Знание ранга матрицы повысит ваш ранг =)

На сегодняшнем уроке мы познакомимся с понятием ранга алгебраической матрицы, научимся находить ранг матрицы методом окаймляющих миноров и методом Гаусса, а также рассмотрим важное практическое приложение темы: исследование системы линейных уравнений на совместность.

Что такое ранг матрицы?

В юмористическом эпиграфе статьи содержится большая доля истины. Само слово "ранг" у нас обычно ассоциируется с некоторой иерархией, чаще всего, со служебной лестницей. Чем больше у человека знаний, опыта, способностей, блата и т.д. - тем выше его должность и спектр возможностей. Выражаясь по молодёжному, под рангом подразумевают общую степень "крутизны".

И братья наши математические живут по тем же принципам. Выведем на прогулку несколько произвольных нулевых матриц:

Задумаемся, если в матрице одни нули, то о каком ранге может идти речь? Всем знакомо неформальное выражение "полный ноль". В обществе матриц всё точно так же:

Ранг нулевой матрицы любых размеров равен нулю.

Примечание: нулевая матрица обозначается греческой буквой "тета"

В целях лучшего понимания ранга матрицы здесь и далее я буду привлекать на помощь материалы аналитической геометрии. Рассмотрим нулевой вектор нашего трёхмерного пространства, который не задаёт определённого направления и бесполезен для построения аффинного базиса. С алгебраической точки зрения координаты данного вектора записаны в матрицу "один на три" и логично (в указанном геометрическом смысле) считать, что ранг этой матрицы равен нулю.

Теперь рассмотрим несколько ненулевых векторов-столбцов и векторов-строк:

В каждом экземпляре есть хотя бы один ненулевой элемент, и это уже кое-что!

Ранг любого ненулевого вектора-строки (вектора-столбца) равен единице

И вообще - если в матрице произвольных размеров есть хотя бы один ненулевой элемент, то её ранг не меньше единицы.

Алгебраические векторы-строки и векторы-столбцы в известной степени абстрактны, поэтому снова обратимся к геометрической ассоциации. Ненулевой вектор задаёт вполне определённое направление в пространстве и годится для построения базиса, поэтому ранг матрицы будем считать равным единице.

Теоретическая справка: в линейной алгебре вектор - это элемент векторного пространства (определяемое через 8 аксиом), который, в частности, может представлять собой упорядоченную строку (или столбец) действительных чисел с определёнными для них операциями сложения

и умножения на действительное число

.

С более подробной информацией о векторах можно ознакомиться в статье Линейные преобразования.

Рассмотрим матрицу , строки которой линейно зависимы (выражаются друг через друга). С геометрической точки зрения во вторую строку записаны координаты коллинеарного вектора

,

который ничуть не продвинул дело в построении трёхмерного базиса, являясь в этом смысле лишним. Таким образом, ранг данной матрицы тоже равен единице.

Перепишем координаты векторов в столбцы (транспонируем матрицу):

Что изменилось с точки зрения ранга? Ничего. Столбцы пропорциональны, значит, ранг равен единице. Кстати, обратите внимание, что все три строки тоже пропорциональны. Их можно отождествить с координатами трёх коллинеарных векторов плоскости, из которых только один полезен для построения "плоского" базиса. И это полностью согласуется с нашим геометрическим смыслом ранга.

Из вышеприведённого примера следует важное утверждение:

Ранг матрицы по строкам равен рангу матрицы по столбцам. Об этом я уже немного упоминал на уроке об эффективных методах вычисления определителя.

Примечание: из линейной зависимости строк следует линейная зависимость столбцов (и наоборот). Но в целях экономии времени, да и в силу привычки я почти всегда буду говорить о линейной зависимости строк.

Продолжим дрессировать нашего любимого питомца. Добавим в матрицу третьей строкой координаты ещё одного коллинеарного вектора

:

Помог ли он нам в построении трёхмерного базиса? Конечно, нет. Все три вектора гуляют туда-сюда по одной дорожке, и ранг матрицы равен единице. Можно взять сколько угодно коллинеарных векторов, скажем, 100, уложить их координаты в матрицу "сто на три" и ранг такого небоскрёба всё равно останется единичным.

Познакомимся с матрицей

,

строки которой линейно независимы. Пара неколлинеарных векторов

пригодна для построения трёхмерного базиса. Ранг этой матрицы равен двум.

А чему равен ранг матрицы

?

Строки вроде не пропорциональны…, значит, по идее трём. Однако ранг этой матрицы тоже равен двум. Я сложил первые две строки и записал результат внизу, то есть линейно выразил третью строку через первые две. Геометрически строки матрицы соответствуют координатам трёх компланарных векторов, причём среди этой тройки существует пара неколлинеарных товарищей.

Как видите, линейная зависимость в рассмотренной матрице не очевидна, и сегодня мы как раз научимся выводить её "на чистую воду".

Думаю, многие догадываются, что такое ранг матрицы!

Рассмотрим матрицу

,

строки которой линейно независимы. Векторы

образуют аффинный базис, и ранг данной матрицы равняется трём.

Как вы знаете, любой четвёртый, пятый, десятый вектор трёхмерного пространства будет линейно выражаться через базисные векторы. Поэтому, если в матрицу

добавить любое количество строк, то её ранг всё равно будет равен трём.

Аналогичные рассуждения можно провести для матриц бОльших размеров (понятно, уже без геометрического смысла).

Определение: ранг матрицы - это максимальное количество линейно независимых строк. Или: ранг матрицы - это максимальное количество линейно независимых столбцов. Да, их количество всегда совпадает.

Из вышесказанного также следует важный практический ориентир: ранг матрицы не превосходит её минимальной размерности. Например, в матрице

четыре строки и пять столбцов. Минимальная размерность - четыре, следовательно, ранг данной матрицы заведомо не превзойдёт 4.

Обозначения: в мировой теории и практике не существует общепринятого стандарта для обозначения ранга матрицы, наиболее часто можно встретить: - как говорится, англичанин пишет одно, немец другое. Поэтому давайте по мотивам известного анекдота про американский и русский ад обозначать ранг матрицы родным словом. Например:

.

А если матрица "безымянная", коих встречается очень много, то можно просто записать .

Как найти ранг матрицы с помощью миноров?

На уроках о вычислении определителя и нахождении обратной матрицы нам уже встречались миноры второго порядка, получаемые вычёркиванием строк и столбцов в матрице "три на три". Сейчас мы расширим понятие минора и дадим его определение… да не вздыхайте так тяжко, тут с картинками =)

Минором прямоугольной матрицы называется определитель, составленный из чисел, которые находятся на пересечении различных строк и различных столбцов матрицы. Число называют порядком минора.

Заметьте, что сама матрица не обязана быть квадратной. Рассмотрим конкретный пример:

Как получить какой-нибудь минор 2-го порядка? Нужно выбрать две произвольные строки, например, 2-ю и 4-ю, два произвольных столбца, например, 3-й и 5-й, и числа, находящиеся на их пересечении

записать в минор второго порядка:

.

Сколько всего миноров 2-го порядка? Много. Существуют специальные комбинаторные формулы для подсчёта количества миноров, но в рамках данного занятия это малополезная информация.

Получим какой-нибудь минор третьего порядка. Рассматриваем три произвольные строки, например, 1-ю, 3-ю и 4-ю, три произвольных столбца, например, 1-й, 2-й и 4-й и с их пересечения

"снимаем" минор 3-го порядка:

.

Что касается миноров 4-го порядка, то здесь выбор уже невелик: необходимо задействовать все 4 строки и четыре произвольных столбца, например, все столбцы, за исключением 3-го:

Алгоритм нахождения ранга матрицы с помощью миноров

В качестве примера возьмём ту же матрицу

.

Поскольку в матрице есть ненулевые элементы, то её ранг не меньше единицы и, очевидно, что он не превосходит 4. Как действовать дальше?

Дальше необходимо начать перебор и вычисление миноров 2-го порядка. Если ВСЕ миноры 2-го порядка окажутся нулевыми, то ранг матрицы равен единице. Но это крайне маловероятно, рано или поздно (чаще всего рано), встретится ненулевой минор , и данный факт означает, что ранг матрицы не менее двух.

На следующем шаге последовательно перебираем и рассчитываем миноры 3-го порядка. Если ВСЕ эти миноры равны нулю, то . Если же встретился минор , то делаем вывод о том, что ранг матрицы не менее трёх и переходим к следующему шагу.

Перебор и вычисление миноров 4-го порядка. Если ВСЕ миноры 4-го порядка равны нулю, то , если встретился минор , то .

Таким образом, ранг матрицы равен максимальному порядку ненулевого минора.

Схему "перебора в лоб" часто критикуют, но как ни странно, во многих случаях она даёт неплохие результаты. Тем не менее, следует отметить длительность процесса и в целях сокращения количества вычислений разработан:

Метод окаймляющих миноров

Алгоритм в общем виде, боюсь, будет мало кому понятен, гораздо проще разобрать его на конкретной задаче:

Пример 1

Найти ранг матрицы методом окаймляющих миноров

Решение: дана квадратная матрица "четыре на четыре" и, понятно, её ранг не больше четырёх.

Заряжаем:

Поскольку есть ненулевые элементы, следовательно, ранг не менее единицы.

Проверку миноров 2-го порядка начинаем с так называемого углового минора

.

,

поэтому переходим к минору

:

,

значит, ранг матрицы не менее двух. Что было бы нужно сделать, если бы и этот минор оказался нулевым? В этом случае рассматриваем минор

,

и если он тоже равен нулю, едем дальше:

, , .

При необходимости (когда получились одни нули), следует продолжить перебор миноров по аналогичной схеме у:

1-й и 3-й строк;

1-й и 4-й строк;

2-й и 4-й строк;

3-й и 4-й строк - до тех пор, пока не повстречается минор, отличный от нуля.

Если все миноры 2-го порядка оказались нулевыми, то .

Но в нашем случае уже на втором шаге обнаружен "хороший" минор, и теперь мы переходим к рассмотрению миноров третьего порядка. Приделываем ноги младшему коллеге

,

который будет входить во все рассматриваемые миноры высших порядков:

Вопрос "третьим будешь?" может быть адресован либо красному, либо зелёному товарищу:

Был бы пятый столбец - нашёлся бы ещё один друг.

Начнём с красного:

Не помогло. Теперь сообразим с зелёным:

Тоже плохо. Свешиваем ноги ниже и последовательно берём в компанию "малиновые" и "коричневые" числа:

Сначала "синие" с "малиновыми":

,

значит, ранг матрицы не менее трёх. Если бы этот минор оказался равным нулю, то следовало бы вычислить определитель из "синих" и "коричневых" чисел. Других миноров 3-го порядка, которые содержат младший ненулевой минор

- нет. И если бы "сине-коричневый" определитель тоже съел бублик, то .

Миноров 3-го порядка на самом деле больше, и рассматриваемый метод в данном случае позволяет сократить вычисления, максимум, до четырёх определителей. Успех нас поджидал на 3-м шаге, и "хороший" ненулевой минор

удостаивается ботинок:

Теперь "синие" и "малиновые" столбцы должны входить во все миноры высших порядков. В данном случае это единственный минор 4-го порядка, совпадающий с определителем матрицы:

(2-я и 3-я строки пропорциональны - см. свойства определителя)

Если бы у бабушки нас в матрице был пятый столбец, то следовало бы вычислить ещё один минор 4-го порядка ("синие", "малиновый" + 5-й столбец).

Вывод: максимальный порядок ненулевого минора равен трём, значит, .

Возможно, не все до конца осмыслили данную фразу: минор 4-го порядка равен нулю, но среди миноров 3-го порядка нашёлся ненулевой - поэтому максимальный порядок ненулевого минора и равен трём.

Возникает вопрос, а почему бы сразу не вычислить определитель? Ну, во-первых, в большинстве заданий матрица не квадратная, а во-вторых, даже если и получится ненулевое значение, то задание будет забраковано, так как необходимо провести стандартное решение "снизу вверх". А в рассмотренном примере нулевой определитель 4-го порядка и вовсе позволяет утверждать, что ранг матрицы лишь меньше четырёх.

Должен признаться, разобранную задачу я придумал сам, чтобы качественнее объяснить метод окаймляющих миноров. В реальной практике всё проще:

Пример 2

Найти ранг матрицы методом окаймляющих миноров

Решение и ответ в конце урока.

Когда алгоритм работает быстрее всего? Вернёмся к той же матрице "четыре на четыре"

.

Очевидно, решение будет самым коротким в случае "хороших" угловых миноров:

И, если , то , в противном случае - .

Размышление совсем не гипотетично - существует немало примеров, где всё дело и ограничивается только угловыми минорами.

Однако в ряде случаев более эффективен и предпочтителен другой способ:

Как найти ранг матрицы с помощью метода Гаусса?

Параграф рассчитан на читателей, которые уже знакомы с методом Гаусса и мало-мальски набили на нём руку.

С технической точки зрения метод не отличается новизной:

1) с помощью элементарных преобразований приводим матрицу к ступенчатому виду;

2) ранг матрицы равен количеству строк.

Совершенно понятно, что использование метода Гаусса не меняет ранга матрицы, и суть здесь предельно проста: согласно алгоритму, в ходе элементарных преобразований выявляются и удаляются все лишние пропорциональные (линейно зависимые) строки, в результате чего остаётся "сухой остаток" - максимальное количество линейно независимых строк.

Преобразуем старую знакомую матрицу с координатами трёх коллинеарных векторов:

(1) Ко второй строке прибавили первую строку, умноженную на -2. К третьей строке прибавили первую строку.

(2) Нулевые строки удаляем.

Таким образом, осталась одна строка, следовательно, . Что и говорить, это гораздо быстрее, чем рассчитать девять нулевых миноров 2-го порядка и только потом сделать вывод.

Напоминаю, что в самой по себе алгебраической матрице ничего менять нельзя, и преобразования выполняются только с целью выяснения ранга! Кстати, остановимся ещё раз на вопросе, почему нельзя? Исходная матрица

несёт информацию, которая принципиально отлична от информации матрицы

и строки . В некоторых математических моделях (без преувеличения) разница в одном числе может быть вопросом жизни и смерти. …Вспомнились школьные учителя математики начальных и средних классов, которые безжалостно срезали оценку на 1-2 балла за малейшую неточность или отклонение от алгоритма. И было жутко обидно, когда вместо, казалось бы, гарантированной "пятёрки" получалось "хорошо" или того хуже. Понимание пришло намного позже - а как иначе доверить человеку спутники, ядерные боеголовки и электростанции? Но вы не беспокойтесь, я не работаю в этих сферах =)

Перейдём к более содержательным заданиям, где помимо прочего познакомимся с важными вычислительными приёмами метода Гаусса:

Пример 3

Найти ранг матрицы с помощью элементарных преобразований

Решение: дана матрица "четыре на пять", значит, её ранг заведомо не больше, чем 4.

В первом столбце, отсутствует 1 или -1, следовательно, необходимы дополнительные действия, направленные на получение хотя бы одной единицы. За всё время существования сайта мне неоднократно задавали вопрос: "Можно ли в ходе элементарных преобразований переставлять столбцы?". Вот здесь - переставили первый-второй столбец, и всё отлично! В большинстве задач, где используется метод Гаусса, столбцы действительно переставлять можно. НО НЕ НУЖНО. И дело даже не в возможной путанице с переменными, дело в том, что в классическом курсе обучения высшей математике данное действие традиционно не рассматривается, поэтому на такой реверанс посмотрят ОЧЕНЬ криво (а то и заставят всё переделывать).

Второй момент касается чисел. В ходе решения полезно руководствоваться следующим эмпирическим правилом: элементарные преобразования по возможности должны уменьшать числа матрицы. Ведь с единицей-двойкой-тройкой работать значительно легче, чем, например, с 23, 45 и 97. И первое действие направлено не только на получение единицы в первом столбце, но и на ликвидацию чисел 7 и 11.

Сначала полное решение, потом комментарии:

(1) Ко второй строке прибавили первую строку, умноженную на -2. К третьей строке прибавили первую строку, умноженную на -3. И до кучи: к 4-й строке прибавили 1-ю строку, умноженную на -1.

(2) Последние три строки пропорциональны. Удалили 3-ю и 4-ю строки, вторую строку переместили на первое место.

(3) Ко второй строке прибавили первую строку, умноженную на -3.

В приведённой к ступенчатому виду матрице две строки.

Ответ:

Теперь ваша очередь мучить матрицу "четыре на четыре":

Пример 4

Найти ранг матрицы методом Гаусса

Напоминаю, что метод Гаусса не предполагает однозначной жёсткости, и ваше решение, скорее всего, будет отличаться от моего решения. Краткий образец оформления задачи в конце урока.

Какой метод использовать для нахождения ранга матрицы?

На практике зачастую вообще не сказано, какой метод необходимо использовать для нахождения ранга. В такой ситуации следует анализировать условие - для одних матриц рациональнее провести решение через миноры, а для других значительно выгоднее применить элементарные преобразования:

Пример 5

Найти ранг матрицы

Решение: первый способ как-то сразу отпадает =)

Чуть выше я советовал не трогать столбцы матрицы, но когда есть нулевой столбец, либо пропорциональные/совпадающие столбцы, то всё же стОит провести ампутацию:

(1) Пятый столбец нулевой, удалим его из матрицы. Таким образом, ранг матрицы не больше четырёх. Первую строку умножили на -1. Это ещё одна фирменная фишка метода Гаусса, превращающая следующее действие в приятную прогулку:

(2) Ко всем строкам, начиная со второй, прибавили первую строку.

(3) Первую строку умножили на -1, третью строку разделили на 2, четвёртую строку разделили на 3. К пятой строке прибавили вторую строку, умноженную на -1.

(4) К пятой строке прибавили третью строку, умноженную на -2.

(5) Последние две строки пропорциональны, пятую удаляем.

В результате получено 4 строки.

Ответ:

Стандартная пятиэтажка для самостоятельного исследования:

Пример 6

Найти ранг матрицы

Краткое решение и ответ в конце урока.

Следует отметить, что словосочетание "ранг матрицы" не так часто встретишь на практике, и в большинстве задач можно вообще обойтись без него. Но существует одно задание, где рассматриваемое понятие является главным действующим лицом, и в заключение статьи мы рассмотрим это практическое приложение:

3. Как исследовать систему линейных уравнений на совместность?

Нередко помимо решения системы линейных уравнений по условию предварительно требуется исследовать её на совместность, то есть доказать, что какое-либо решение вообще существует. Ключевую роль в такой проверке играет теорема Кронекера-Капелли, которую я сформулирую в необходимом виде:

Если ранг матрицы системы равен рангу расширенной матрицы системы, то система совместна, причём, если данное число совпадает с количеством неизвестных, то решение единственно.

Таким образом, для исследования системы на совместность нужно проверить равенство , где - матрица системы (вспоминаем терминологию из урока Метод Гаусса), а - расширенная матрица системы (т.е. матрица с коэффициентами при переменных + столбец свободных членов).

Всё просто: обратный матрица алгебраический уравнение

Пример 7

Исследовать систему на совместность и найти её решение, если система совместна

А когда системы уже прорешаны - просто вдвойне… нет - втройне =)

Решение: тем не менее, обратим внимание на строгую верхнюю строчку - по условию,

в первую очередь, требуется проверить систему на совместность. Как начать решение?

В любом случае записываем расширенную матрицу системы и с помощью элементарных преобразований приводим её к ступенчатому виду:

а) Пример №1 статьи о методе исключения неизвестных:

Элементарные преобразования не меняют ранга матриц, поэтому в результате выполненных действий получены эквивалентные исходным матрица системы

и расширенная матрица системы

.

Максимальный порядок ненулевого минора матрицы системы равен трём. Здесь таковой минор в единственном экземпляре и совпадает он, понятно, с определителем самой матрицы:

(см. урок о методах вычисления определителя)

Следовательно, .

Максимальный порядок ненулевого минора расширенной матрицы системы также равен трём:

(взяты первые два столбца + столбец свободных членов).

Таким образом, .

Вывод: , значит, по теореме Кронекера-Капелли система совместна; и поскольку количество переменных ( - 3 шт.) совпадает с рангом, то система имеет единственное решение.

Что дальше? Дальше следует непосредственно решить систему. Если по условию не предложен способ, то, конечно же, раскручиваем обратный ход метода Гаусса. Если требуется решить систему методом Крамера или с помощью обратной матрицы, ну что поделать….

б) Пример №1 статьи о несовместных системах и системах с общим решением:

В результате элементарных преобразований получена эквивалентная матрица системы

и расширенная матрица системы

.

Максимальный порядок ненулевого минора матрицы системы равен двум, например:

,

поэтому

Заметьте, что здесь есть возможность выбрать и другой минор 2-го порядка, но проще всего в качестве примера взять ступенчатый определитель.

Максимальный порядок ненулевого минора расширенной матрицы системы равен трём, например:

(первые два столбца + столбец свободных членов).

Таким образом,

.

Вывод:

,

значит, по теореме Кронекера-Капелли система несовместна.

Однако помните - если по условию не требуется исследовать систему на совместность, то вполне достаточно ограничиться стандартным ответом (см. решение вышеуказанного урока).

в) Пример №3 той же статьи:

В результате элементарных преобразований получена эквивалентная матрица системы и расширенная матрица системы .

Максимальный порядок ненулевого минора матрицы системы равен двум, например:

,

следовательно, .

Максимальный порядок ненулевого минора расширенной матрицы системы также равен двум, например:

,

Поэтому

Второй абзац можно полностью заменить хитрой лаконичной фразой: "по этой же причине

".

Вывод:

,

значит, по теореме Кронекера-Капелли система совместна. Поскольку ранг меньше количества переменных ( - 4 шт.), то система имеет бесконечно много решений.

Далее находим общее решение по стандартной схеме.

Готово.

Образец исследования системы на совместность также можно посмотреть в начале

Примера №1 урока о нахождении различных базисных решений системы.

…Всё-таки иногда удивительно обманываются ожидания - порой думаешь, что статья получится огромной, а она оказывается весьма компактной, а иногда, как сейчас - наоборот. Посмотрел статистику и жутко удивился добрым 20-ти тысячам символов. Поэтому всем высокого ранга и до скорых встреч!

Решения и ответы:

Пример 2: Решение: поскольку в матрице есть ненулевые элементы, то её ранг не меньше единицы.

,

значит, ранг матрицы не менее двух.

Рассмотрим миноры 3-го порядка, при этом в них обязательно должен содержаться ненулевой минор

. Таких миноров два:

Максимальный порядок ненулевого минора равен двум.

Ответ:

Пример 4: Решение: с помощью элементарных преобразований приведем матрицу к ступенчатому виду:

(1) Первую и вторую строки поменяли местами. К 4-й строке прибавили 3-ю строку, умноженную на -2.

(2) Вторая и 4-я строки одинаковы, 4-ю строку удалили. К третьей строке прибавили вторую строку, умноженную на -1.

(3) Первую и третью строки поменяли местами.

(4) Ко второй строке прибавили первую строку, умноженную на -2. К 3-й строке прибавили первую строку, умноженную на -1.

(5) К третьей строке прибавили вторую строку, умноженную на 3.

В результате получены 3 строки, значит, ранг матрицы равен 3.

Ответ:

Пример 6: Решение: ранг матрицы не превосходит минимальной размерности, то есть, трёх.

В матрице есть ненулевые элементы, значит, ранг не менее единицы.

Максимальный порядок ненулевого минора равен трём

Ответ:

Размещено на Allbest.ru

...

Подобные документы

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация [184,4 K], добавлен 21.09.2013

  • Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.

    контрольная работа [200,4 K], добавлен 17.12.2010

  • Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.

    контрольная работа [88,2 K], добавлен 19.01.2014

  • Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.

    контрольная работа [97,3 K], добавлен 24.05.2009

  • Классификация способов нахождения обратной матрицы, полученной в системе MathCAD с помощью миноров и алгебраических дополнений: разбиения ее на клетки и на произведение 2-х треугольных матриц; с помощью модели Гаусса. Вычисление погрешности методов.

    лабораторная работа [380,9 K], добавлен 31.10.2012

  • Изучение понятий, действий (сумма, разность, произведение), свойств квадратной матрицы. Определение и признаки ранга матрицы. Анализ методов окаймляющих миноров и преобразований. Расчет системы линейных уравнений согласно методам Крамера и матричному.

    реферат [178,9 K], добавлен 01.02.2010

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа [220,0 K], добавлен 21.10.2011

  • Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.

    контрольная работа [138,7 K], добавлен 05.07.2015

  • Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.

    контрольная работа [220,9 K], добавлен 06.01.2011

  • Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.

    контрольная работа [1,1 M], добавлен 04.05.2010

  • Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.

    презентация [617,0 K], добавлен 15.09.2014

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.

    задача [26,8 K], добавлен 29.05.2012

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа [126,9 K], добавлен 20.04.2016

  • Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.

    учебное пособие [658,4 K], добавлен 26.01.2009

  • Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.

    курсовая работа [59,8 K], добавлен 27.03.2011

  • Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.

    лабораторная работа [264,1 K], добавлен 24.09.2014

  • Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.

    лабораторная работа [489,3 K], добавлен 28.10.2014

  • Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.

    контрольная работа [462,6 K], добавлен 12.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.