Египетская нумерация. Математические знания египтян
Древнейшие древнеегипетские математические тексты. Папирус Ахмеса или папирус Ринда – наиболее объёмный манускрипт, содержащий 84 математические задачи. Фрагменты вычислительного характера. Древнеегипетская нумерация. Иероглифы для изображения чисел.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 31.05.2017 |
Размер файла | 102,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Египетская нумерация. Математические знания египтян
1. Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов - известно, что греческие математики учились у египтян.
Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.
2. Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:
· Папирус Ахмеса или папирус Ринда - наиболее объёмный манускрипт, содержащий 84 математические задачи. Написан около 1650 г. до н. э.
· Московский математический папирус (25 задач), около 1850 г. до н. э., 544 Ч 8 см.
· Так называемый "кожаный свиток", 25 Ч 43 см.
· Папирусы из Лахуна (Кахуна), содержащие ряд фрагментов на математические темы.
· Берлинский папирус, около 1300 года до н. э.
· Каирские деревянные таблички (таблички Ахмима).
· Папирус Рейснера, примерно XIX век до н. э.
3. От Нового царства до нас дошли несколько фрагментов вычислительного характера.
Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры - это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.
4. Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике.
По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным.
Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.
5. Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни (целочисленные) и возводить в степень, решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф "куча" обозначал неизвестное.
6. Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.
7. Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:
8. или то же самое написать цифрами (три символа десятки):
9. Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению. древнеегипетский математический нумерация
Особые значки обозначали дроби вида и . Однако общего понятия дроби у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.
Сложение
Чтобы показать знаки сложения или вычитания использовался иероглиф
или
Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал "сложение", в других случаях он означал "вычитание".
Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.
Например: 2343 + 1671
Собираем все однотипные иероглифы вместе и получаем:
Преобразуем:
Размещено на Allbest.ru
...Подобные документы
Примеры изучение дробных и многозначных чисел путем ребусов и головоломок. Основные принципы получения трехзначных чисел, путем шестикратного сложения. Математические задачи, направленные на развитие логического мышления и быстрого усваивания материала.
презентация [195,1 K], добавлен 04.02.2011Нумерация как отображение некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов. Приведение к общему знаменателю на основе понятия нумерованного множества. Каноническое представление морфизма функции.
реферат [2,1 M], добавлен 16.05.2009Рассмотрение понятий, лежащих в основе методики изучения нумерации чисел первого десятка. Анализ использования современных средств обучения детей начальной школы. Проектирование уроков по изучению нумерации чисел в методической системе "Школа России".
дипломная работа [2,9 M], добавлен 13.10.2015Математика как наука о числах, скалярных величинах и простых геометрических фигурах. Математические модели, отражающие объективные свойства и связи. Основные понятия математики, ее язык. Аксиоматический метод, математические структуры, функции и графики.
реферат [58,1 K], добавлен 26.07.2010Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.
курсовая работа [565,7 K], добавлен 08.03.2016Математические методы распознавания (классификации с учителем) и прогноза. Кластеризация как поиск оптимального разбиения и покрытия. Алгоритмы распознавания и интеллектуального анализа данных. Области практического применения систем распознавания.
учебное пособие [2,1 M], добавлен 14.06.2014История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.
презентация [178,6 K], добавлен 13.05.2011Главные особенности счета древних людей, папуасов на островах Тихого океана, римлян. Китайские коммерческие числовые знаки. Славянская нумерация, её особенности. Высказывания знаменитого французского математика и физика XVIII-XIX века Лапласа про счет.
презентация [695,4 K], добавлен 01.12.2011Краткие биографические данные от Джоне Непере - шотландском математике, изобретателе логарифмов и замечательного вычислительного инструмента - таблицы логарифмов. Математические заслуги Брадиса; его Таблицы. Изобретение первой логарифмической линейки.
презентация [5,3 M], добавлен 30.10.2013Теоретико-числовая база построения СОК. Теорема о делении с остатком. Алгоритм Евклида. Китайская теорема об остатках и её роль в представлении чисел в СОК. Модели модулярного представления и параллельной обработки информации. Модульные операции.
дипломная работа [678,3 K], добавлен 24.02.2010Гипатия – первая в истории человечества женщина-ученый. Яркие математические способности и эрудиция итальянки Марии Аньези. Вклад Софи Жермен в дифференциальную геометрию, теорию чисел и механику. Первая в мире женщина-программистка Августа Ада Кинг.
презентация [7,7 M], добавлен 01.02.2015Графический и симплексный методы решения ОЗЛП. Построение функции цели, образующая совместно с системой ограничений математическую модель экономической задачи. Нахождение неотрицательного решения системы линейных уравнений. Решение транспортной задачи.
лабораторная работа [322,9 K], добавлен 10.04.2009Задачи оптимального управления системами обыкновенных дифференциальных уравнений. Системы уравнений, определяющие дифференциальную связь между состоянием и управлением. Решение задачи о прилунении космического корабля при помощи дискретных методов.
курсовая работа [188,9 K], добавлен 25.01.2014Предмет и задачи исследования операций. Основные понятия и принципы исследований, математические модели. Детерминированная задача согласования по определению минимального времени выполнения комплекса работ, времени начала и окончания каждой операции.
курсовая работа [233,9 K], добавлен 20.11.2012Математические методы систематизации и использования статистических данных для научных и практических выводов. Закон распределения дискретной случайной величины. Понятие генеральной совокупности. Задачи статистических наблюдений. Выборочное распределение.
реферат [332,8 K], добавлен 10.12.2010Выбор основного алгоритма решения задачи. Требования к функциональным характеристикам программы. Минимальные требования к составу и параметрам технических средств и к информационной и программной совместимости. Логические модели, блок-схемы алгоритмов.
курсовая работа [13,1 K], добавлен 16.11.2010Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.
контрольная работа [892,8 K], добавлен 04.11.2013Возникновение науки исследования операций и особенности применения операционных методов. Отделение формы задачи от ее содержания с помощью процесса абстракции. Классы задач. Некоторые математические методы, используемые для получения решений на моделях.
реферат [17,7 K], добавлен 27.06.2011Сферическая форма пузыря, получаемая за счёт поверхностного натяжения. Открытие способа соединения двух мыльных пузырей так, чтобы суммарная площадь поверхности с площадью перегородки была наименьшей. Простейшие математические задачи с мыльными пузырями.
контрольная работа [1,2 M], добавлен 01.01.2014Приведены решения задач по темам, соответствующим учебному плану, даны необходимые методические указания и приведены задания для контрольной работы.
практическая работа [150,4 K], добавлен 16.07.2007