Понятие корреляционного анализа
Понятие, виды корреляционной связи. Положительная, отрицательная и другие виды корреляций. Выбросы, задачи корреляционного анализа, установление направлений и форм связи между варьирующими признаками. Бисериальный и другие коэффициенты корреляции.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.06.2017 |
Размер файла | 434,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Основные понятия
1.1 Понятие, виды корреляционной связи. Положительная, отрицательная и другие виды корреляций
1.2 Выбросы, задачи корреляционного анализа - установление направлений (положительное, отрицательное) и формы ( линейная, нелинейная) связи между варьирующими признаками; измерение её тесноты, проверка уровня значимости полученных коэффициентов корреляции
1.3 Коэффициент линейной корреляции Пирсона. Максимальная и минимальная величины коэффициента. Значение знака коэффициента корреляции ( «+» или «-«) для интерпретации полученной связи. Условия для применения коэффициента корреляции Пирсона
1.4 Бисериальный коэффициент корреляции. Множественная корреляция. Частная корреляция. Расчет коэффициентов корреляции в программах EXCELL и SPSS
2. Практическое применение в психологии
2.1 Практическое применение корреляционного анализа по методу Спирмена (ранги Спирмена)
Список используемой литературы
1. Основные понятия
корреляционный анализ бисериальный
1.1 Понятие, виды корреляционной связи. Положительная, отрицательная и другие виды корреляций
Важнейшей целью статистики является изучение объективно существующих связей между явлениями. В ходе статистического исследования этих связей необходимо выявить причинно-следственные зависимости между показателями, т.е. насколько изменение одних показателей зависит от изменения других показателей.
Существует две категории зависимостей (функциональная и корреляционная) и две группы признаков (признаки-факторы и результативные признаки). В отличие от функциональной связи, где существует полное соответствие между факторными и результативными признаками, в корреляционной связи отсутствует это полное соответствие.
Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.
Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию - о взаимосвязи этих параметров.
Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными. В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором -- также и её направление. Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция -- корреляция, при которой увеличение одной переменной связано с уменьшением другой. При этом коэффициент корреляции будет отрицательным. Положительная корреляция в таких условиях -- это такая связь, при которой увеличение одной переменной связано с увеличением другой переменной. Возможна также ситуация отсутствия статистической взаимосвязи -- например, для независимых случайных величин.
1.2 Выбросы, задачи корреляционного анализа - установление направлений и формы связи между варьирующими признаками
Признаки явлений и процессов по их значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называют факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными.
В статистике различают функциональные и стохастические (вероятностные) связи явлений и процессов:
· Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного.
· Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической (вероятностной). Частным случаем стохастической связи является корреляционная связь.
Кроме того, связи между явлениями и их признаками классифицируются по степени тесноты, направлению и аналитическому выражению.
По направлению выделяют связь прямую и обратную:
· Прямая связь - это такая связь, при которой с увеличением (уменьшением) значений факторного признака происходит увеличение (уменьшение) значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства.
· В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.
По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные:
· Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида: у=а+bх.
· Если же связь может быть выражена уравнением какой-либо кривой линии (параболы, гиперболы и др.), то такую связь называют нелинейной (криволинейной) связью.
Теснота связи показывает меру влияния факторного признака на общую вариацию результативного признака. Классификация связи по степени тесноты представлена в таблице 1.
Таблица 1 - Количественные критерии оценки тесноты связи
Величина коэффициента корреляции |
Характер связи |
|
До ±3 |
Практически отсутствует |
|
От ±3 до ±0,5 |
Слабая |
|
От ±0,5 до ±0,7 |
Умеренная |
|
От ±0,7 до ±1,0 |
Сильная |
Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: приведения параллельных данных, аналитических группировок, графический, корреляции. Основным методом изучения статистической взаимосвязи является статистическое моделирование связи на основе корреляционного и регрессионного анализа.
1.3 Коэффициент линейной корреляции Пирсона. Максимальная и минимальная величины коэффициента. Значение знака коэффициента корреляции ( «+» или «-«) для интерпретации полученной связи. Условия для применения коэффициента корреляции Пирсона
Коэффициент корреляции Пирсона (r-Пирсона) применяется для исследования взаимосвязи двух переменных, измеренных в метрических шкалах на одной и той же выборке. Он позволяет определить, насколько пропорциональная изменчивость двух переменных.
Данный коэффициент разработали Карл Пирсон, Фрэнсис Эджуорт и Рафаэль Уэлдон в 90-х годах XIX века. Коэффициент корреляции изменяется в пределах от минус единицы до плюс единицы.
Коэффициент корреляции r-Пирсона характеризует существование линейной связи между двумя величинами. Если связь криволинейная то он не будет работать.
Чтобы приступать к расчетам коэффициента корреляции r-Пирсона необходимо выполнение следующих условий:
Исследуемые переменные X и Y должны быть распределены нормально.
Исследуемые переменные X и Y должны быть измерены в интервальной шкале или шкале отношений.
Количество значений в исследуемых переменных X и Y должно быть одинаковым.
При расчете коэффициент линейной корреляции Пирсона используется специальная формула. Величина коэффициента корреляции варьируется от 0 до 1.
Слабыми сторонами линейного коэффициента корреляции Пирсона являются:
- неустойчивость к выбросам.
- с помощью коэффициента корреляции Пирсона можно определить только силу линейной взаимосвязи между переменными, другие виды взаимосвязей выявляются методами регрессионного анализа.
1.4 Бисериальный коэффициент корреляции. Множественная корреляция. Частная корреляция. Расчет коэффициентов корреляции в программах EXCELL и SPSS
Данный КК вычисляется, когда одна переменная измерена в номинальной дихотомической шкале (0 или 1), а вторая переменная в количественной шкале. Одним из способов описания связи между такими переменными является просто вычисление КК Пирсона по исходным данным. Однако можно воспользоваться более простой формулой для вычисления. В этом случае КК называется точечный бисериальный КК и обозначается prb. Он вычисляется по следующей формуле:
rpb = (x 1 - x 0) : Sx (n1 n0 : n (n - 1) , где x 1 - среднее значение для тех лиц, у которых номинальная переменная у = 1; x 0 - среднее значение для тех лиц, у который номинальная переменная у = 0; Sx - стандартное отклонение для значений по переменной х; n1 - количество лиц, для которых переменная у = 1; n0 - количество лиц, для которых переменная у = 0; n - общее количество лиц, т.е. n = n1 + n0.
Этот КК называется бисериальным, т.к. фактически имеется две серии лиц. Одна серия лиц, для которых номинальная переменная у = 1,а вторая серия лиц, для которых номинальная переменная у = 0.
Для того, чтобы рассчитать коэффициент корреляции используя статистический пакет SPSS необходимо сделать следующие шаги:
1.Вносим значения для двух переменных в таблицу Data Editor. (Например var1 и var2)
2. Выбираем Analyze -> Correlate -> Bivariate…
3. В открывшемся окне выделяем две переменные (например var1 и var2).
4. Нажимаем на кнопку >. Выделенные переменные перенесутся вправо, в окно Paired Variables (они будут выглядеть как var1-var2).
5. Выделяем нужный метод вычисления коэффициента корреляции:
-корреляцию Пирсона (Pearson) -- стоит по-умолчанию
-корреляцию r-Спирмена (Spearman)
-корреляцию t-Кендала (Kendal)
Если необходимо учесть пропуски значений путем их построчного удаления, то нажимаем Options -> Exclude cases listwise -> Continue. По-умолчанию программа использует учет пропусков значений путем их попарного удаления (Exclude cases pairwise).
6. Результат получен.
2. Практическое применение в психологии
2.1 Практическое применение корреляционного анализа по методу Спирмена (ранги Спирмена)
Студента-психолога нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых группах.
В математике для описания связей между переменными величинами используют понятие функции F, которая ставит в соответствие каждому определенному значению независимой переменной X определенное значение зависимой переменной Y. Полученная зависимость обозначается как Y=F(X).
При этом виды корреляционных связей между измеренными признаками могут быть различны: так, корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна -- если с увеличением или уменьшением одной переменной X,вторая переменная Y в среднем либо также растет, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами.
Корреляция будет положительной, если с увеличением переменной X переменная Y в среднем также увеличивается, а если с увеличением X переменная Y имеет в среднем тенденцию к уменьшению, то говорят о наличии отрицательной корреляции. Возможна ситуация, когда между переменными невозможно установить какую-либо зависимость. В этом случае говорят об отсутствии корреляционной связи.
Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.
Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.
Ранговый коэффициент линейной корреляции Спирмена подсчитывается по формуле:
где n -- количество ранжируемых признаков (показателей, испытуемых);
D -- разность между рангами по двум переменным для каждого испытуемого;
D2 -- сумма квадратов разностей рангов.
Критические значения коэффициента корреляции рангов Спирмена представлены ниже:
Величина коэффициента линейной корреляции Спирмена лежит в интервале +1 и -1. Коэффициент линейной корреляции Спирмена может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.
Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными. Так, в частности, при корреляции переменной величины с самой собой величина коэффициента корреляции будет равна +1. Подобная связь характеризует прямо пропорциональную зависимость. Если же значения переменной X будут распложены в порядке возрастания, а те же значения (обозначенные теперь уже как переменная Y) будут располагаться в порядке убывания, то в этом случае корреляция между переменными Х и Y будет равна точно -1. Такая величина коэффициента корреляции характеризует обратно пропорциональную зависимость.
Знак коэффициента корреляции очень важен для интерпретации полученной связи. Если знак коэффициента линейной корреляции -- плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.
Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. При этом выбор переменной, которой приписывается характер (тенденция) возрастания -- произволен. Это может быть как переменная X, так и переменная Y. Однако если считается, что увеличивается переменная X, то переменная Y будет соответственно уменьшаться, и наоборот.
Рассмотрим пример корреляции Спирмена.
Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.
Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в таблице:
Подставляем полученные данные в вышеприведенную формулу, и производим расчет. Получаем:
Для нахождения уровня значимости обращаемся к таблице «Критические значения коэффициента корреляции рангов Спирмена,» в которой приведены критические значения для коэффициентов ранговой корреляции.
Строим соответствующую «ось значимости»:
Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью -- иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Н0) гипотезу о сходстве и принять альтернативную (Н1) о наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.
Список используемой литературы
1 Сидоренко Е.В. Методы математической обработки в психологии. Спб.: ООО «Речь», 2000. - 350 с.
2 Лекция на тему: "Корреляционный анализ''// www.kgafk.ru, 2006, 8 с.
3 Ковалев В.В, Волкова О.Н., Анализ хозяйственной деятельности предприятия//polbu.ru, 2005, 2 с.
4 Поляков Л.Е., Коэффициент ранговой корреляции Спирмена//www.eduhmao.ru, 1971, 2 с.
5 Бондарь А.Г., Статюха Г.А. Планирование эксперимента в химической технологии. Киев: Высшая школа, 1976 - 335 с.
6 Адлер Ю.П., Грановский Ю.В., Маркова Е.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976.-278 с.
7 Андерсон Т., Введение в многомерный статистический анализ//www.ami.nstu.ru, 1963, 24 с.
Размещено на Allbest.ru
...Подобные документы
Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.
курсовая работа [214,6 K], добавлен 04.09.2007Показатели тесноты связи. Смысл коэффициентов регрессии и эластичности. Выявление наличия или отсутствия корреляционной связи между изучаемыми признаками. Расчет цепных абсолютных приростов, темпов роста абсолютного числа зарегистрированных преступлений.
контрольная работа [1,5 M], добавлен 02.02.2014Функциональные и корреляционные зависимости. Сущность корреляционной связи. Методы выявления наличия корреляционной связи между двумя признаками и измерение степени ее тесноты. Построение корреляционной таблицы. Уравнение регрессии и способы его расчета.
контрольная работа [55,2 K], добавлен 23.07.2009Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.
курсовая работа [232,7 K], добавлен 21.05.2015Установление корреляционных связей между признаками многомерной выборки. Статистические параметры регрессионного анализа линейных и нелинейных выборок. Нахождение функций регрессии и проверка гипотезы о значимости выборочного коэффициента корреляции.
курсовая работа [304,0 K], добавлен 02.03.2017Проведение аналитической группировки и дисперсионного анализа данных, с целью количественно определить тесноту связи. Определение степени корреляции между группировочными признаками и вариационной зависимости переменной, обусловленной регрессией.
контрольная работа [140,5 K], добавлен 17.08.2014Сущность, цели применения, основные достоинства метода канонических корреляций. Оценка тесноты связи между новыми каноническими переменными U и V. Максимальный канонический коэффициент корреляции, методика его расчета. Использование критерия Бартлетта.
презентация [109,2 K], добавлен 10.02.2015Предпосылки корреляционного анализа - математико-статистического метода выявления взаимозависимости компонентов многомерной случайной величины и оценки их связи. Точечные оценки параметров двумерного распределения. Аппроксимация уравнений регрессии.
контрольная работа [648,3 K], добавлен 03.04.2011Задачи которые решает корреляционный анализ. Определение формы связи - установление математической формы, в которой выражается связь. Измерение тесноты, т.е. меры связи между признаками с целью установления степени влияния данного фактора на результат.
реферат [67,3 K], добавлен 09.11.2010Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.
презентация [92,4 K], добавлен 01.11.2013Значение математической статистики для анализа закономерностей массовых явлений. Основные теоретические выкладки корреляционного анализа. Применение его инструментария в контексте металлургической промышленности в среде программного средства Statistica 6.
реферат [261,4 K], добавлен 03.08.2014Основные определения геометрических векторов. Понятие коллинеарных и равных векторов. Простейшие операции над векторами, их проекция на ось. Понятие угла между векторами. Отсчет угла против часовой стрелки, положительная и отрицательная проекция.
реферат [187,4 K], добавлен 19.08.2009Понятие вероятности события. Петербургский парадокс. Выявление наличия взаимосвязи между признаками в регрессионном анализе. Сравнение коэффициентов корреляции и регрессии. Нахождение тренда с прогнозами в Excel. Методы математического программирования.
контрольная работа [455,5 K], добавлен 12.02.2014Вероятность и ее общее определение. Теоремы сложения и умножения вероятностей. Дискретные случайные величины и их числовые характеристики. Закон больших чисел. Статистическое распределение выборки. Элементы корреляционного и регрессионного анализа.
курс лекций [759,3 K], добавлен 13.06.2015Сущность и содержание корреляционного и регрессивного анализа, элементарные и индексные методы обработки расчетных данных. Диагностика объема производства и реализации продукции, материальных ресурсов, себестоимости продукции, финансовых результатов.
курсовая работа [1,1 M], добавлен 10.06.2014Анализ исследований в области лечения диабета. Использование классификаторов машинного обучения для анализа данных, определение зависимостей и корреляции между переменными, значимых параметров, а также подготовка данных для анализа. Разработка модели.
дипломная работа [256,0 K], добавлен 29.06.2017Понятие комплекса случайных величин, закона их распределения и вероятностной зависимости. Числовые характеристики случайных величин: математическое ожидание, момент, дисперсия и корреляционный момент. Показатель интенсивности связи между переменными.
курсовая работа [2,4 M], добавлен 07.02.2011Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.
шпаргалка [945,2 K], добавлен 18.06.2012Точечное оценивание основных числовых характеристик, функции и плотности распределения компонент многомерного случайного вектора. Статистическая проверка характера распределения. Особенности корреляционного анализа признаков этой математической категории.
курсовая работа [1,1 M], добавлен 01.10.2013Особенности нахождения связи между величинами (функциями). Понятие, сущность, свойства и характерные особенности дифференциальных уравнений, а также анализ их разрешимости. Характеристика и методика решения задачи Дидоны, ее графическое изображение.
курсовая работа [897,4 K], добавлен 02.04.2010