Дослідне вивчення властивостей математичного маятника

Математичний маятник як матеріальна точка, підвішена на невагомій нерозтяжній нитці. Справедливість формули періоду коливань маятника для різних довжин і різних кутів відхилення від положення рівноваги. Відносне відхилення результатів експерименту.

Рубрика Математика
Вид лабораторная работа
Язык украинский
Дата добавления 23.07.2017
Размер файла 92,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лабораторна робота № 7.

ДОСЛІДНЕ ВИВЧЕННЯ ВЛАСТИВОСТЕЙ МАТЕМАТИЧНОГО МАЯТНИКА

Мета роботи: Перевірити справедливість формули періоду коливань математичного маятника для різних довжин маятника і різних кутів відхилення від положення рівноваги.

Прилади і матеріали: Штатив, сталева кулька на нитці, рулетка, секундомір, транспортир.

Теоретичні відомості.

Математичним маятником називається матеріальна точка, підвішена на невагомій нерозтяжній нитці. Гарним наближенням до цієї моделі є маленька кулька, підвішена на тонкій міцній нитці (тонка сталева дротина, рибальська волосінь, тощо). Як було показано в курсі фізики, при відхиленні маятника на малий кут він буде здійснювати гармонічні коливання. Період цих коливань визначається виразом:

,(1)

де l - довжина маятника.

В даній роботі пропонується перевірити справедливість формули (1) для різних довжин і різних кутів відхилення.

Оскільки частота коливань обернена до періоду , то з формули (1) одержимо:

(2)

З (2) випливає, що добуток частоти маятника на корінь квадратний з його довжини повинен бути сталою величиною:

(3)

Якщо , то ця константа дорівнює

Хід роботи.

Завдання 1. Дослідження залежності частоти коливань математичного маятника від його довжини.

1. Змінюючи довжину нитки, встановіть її приблизно рівною 1 м. Ретельно виміряйте довжину маятника l - це відстань від точки підвісу до центра кульки (див. рис.1). Під час вимірювання намагайтесь забезпечити точність 1-2 мм. Оскільки довжину близько 1м одному вимірювати незручно, то запросіть на допомогу ще одного студента.

2. Відхиліть маятник від положення рівноваги на кут =3?5? і відпустіть маятник. Пропустіть декілька коливань і з рахунком "нуль" включіть секундомір. Зручно включати секундомір в момент, коли маятник перебуває в положенні максимального відхилення. Виміряйте час t для 30?50 коливань.

3. Повторіть дослід ще один раз.

4. Зменште довжину маятника приблизно вдвічі і повторіть вимірювання довжини і часу.

5. Ще раз зменште вдвічі довжину маятника, виміряйте її і визначте час 50 коливань. Оскільки період коливань зменшується, то для підвищення точності вимірювань число коливань слід збільшити.

6. Для кожного досліду обчисліть частоту

, і

добуток

. Результати вимірювань і обчислень зручно подати у виді

таблиці 1.

Табл.1.

l, м

N

t, с

н, с-1

1

2

3

Завдання 2. Дослідження залежності частоти коливань

маятника від амплітуди його коливань.

1. Встановіть довжину маятника рівною приблизно 1 м. Виміряйте довжину маятника і визначте час 30?50 коливань, як це описано в п.п.1 і 2 завдання 1.

2. Обчисліть частоту коливань маятника, одержану з досліду (експериментальну):

.

3. Повторіть визначення частоти для кутів відхилення 20?, 40? і 60? від вертикалі. Оскільки при великих кутах відхилення стабільність коливань зменшується, то можна обмежитись меншим числом коливань (але не менше 20). матеріальний коливання рівновага експеримент

4. Обчисліть теоретичну частоту коливань маятника за формулою (2) . Візьміть = 3,1416 і .

5. Знайдіть відносне відхилення результатів експерименту від теоретичного значення:

6. Результати вимірювань і обчислень зручно подати у вигляді таблиці 2.

Табл.2

l, м

N

t, с

не,с-1

н, с-1

E,%

1

2

3

4

7. Зробіть висновки до кожного з завдань.

Контрольні запитання

1. Які коливання називають гармонічними?

2. При яких умовах виникають механічні гармонічні коливання?

3. Чи підтвердив експеримент передбачену теорією залежність частоти коливань математичного маятника від його довжини?

4. Чи відрізняється частота коливань маятника при великих кутах відхилення від теоретичного значення, обчисленого за формулою (2)?

Размещено на Allbest.ru

...

Подобные документы

  • Анализ движения математического маятника без трения в случае произвольных колебаний. Построение численно соответствующих кривых движения при различных начальных условиях. Закон движения маятника в эллиптических функциях, графики его траекторий.

    курсовая работа [1,2 M], добавлен 08.04.2014

  • Вывод уравнения движения маятника. Кинетическая и потенциальная сила энергии. Определение всех положений равновесия. Исследование на устойчивость. Аналитический и численный расчет траектории системы. Изображение траектории системы разными способами.

    контрольная работа [344,2 K], добавлен 12.04.2016

  • Виведення рівняння коливань струни. Постановка початкових і кінцевих умов. Розв’язання задачі про коливання нескінченної і напівнескінченної струни. Метод та фізичний зміст формули Даламбера. Розповсюдження хвиль відхилення. Метод Фур'є, стоячі хвилі.

    курсовая работа [1,3 M], добавлен 04.04.2011

  • Визначення ймовірності виходу приладу з ладу. Розв’язок задачі з використанням інтегральної формули Бернуллі та формулу Пуассона. Визначення математичного сподівання, середньоквадратичного відхилення, дисперсії, функції розподілу випадкової величини.

    контрольная работа [84,2 K], добавлен 23.09.2014

  • Обчислення оцінок основних статистичних характеристик: середнього значення, середнього квадратичного відхилення результатів, дисперсії розсіювання результатів вимірювань, коефіцієнта асиметрії. Перевірка наявніості похибок за коефіцієнтом Стьюдента.

    контрольная работа [245,5 K], добавлен 25.02.2011

  • Визначення кількості сполучень при дослідженні ймовірностей. Закон розподілу випадкової величини. Функція розподілу, знаходження середнього квадратичного відхилення. Визначення щільності розподілу ймовірностей. Закон неперервної випадкової величини.

    контрольная работа [71,3 K], добавлен 13.03.2015

  • Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.

    реферат [88,5 K], добавлен 02.02.2010

  • Застосування методів математичного аналізу для знаходження центрів мас кривих, плоских фігур та поверхонь з використанням інтегральних числень функцій однієї та кількох змінних. Поняття визначеного, подвійного, криволінійного та поверхневого інтегралів.

    курсовая работа [515,3 K], добавлен 29.06.2011

  • Побудова графіків реалізацій вхідного та вихідного процесів, розрахунок функцій розподілу, математичного сподівання, кореляційної функції. Поняття та принципи вивчення одномірної функції розподілу відгуку, порядок конструювання математичної моделі.

    контрольная работа [316,2 K], добавлен 08.11.2014

  • Діяльнісний підхід до організації навчального процесу в педагогічному університеті. Змістове наповнення та методика використання історичного матеріалу на лекціях з математичного аналізу. Історичні задачі як засіб створення проблемних ситуацій на лекціях.

    курсовая работа [195,5 K], добавлен 21.04.2015

  • Математичний аналіз властивостей геометричних об'єктів, відкритих і замкнених множин. Основні приклади, спеціальні метрики та топологія повних метричних просторів. Теорема Бера про вкладені кулі. Визначення границі числової послідовності та повноти.

    дипломная работа [2,3 M], добавлен 28.05.2019

  • Аналіз математичних моделей технологічних параметрів та методів математичного моделювання. Задачі технологічної підготовки виробництва, що розв’язуються за допомогою математичного моделювання. Суть нечіткого методу групового врахування аргументів.

    курсовая работа [638,9 K], добавлен 18.07.2010

  • Деякі відомості математичного аналізу. Виховне значення самостійної навчальної роботи. Короткий огляд та аналіз сучасних систем комп'ютерної математики. Відомості про систему Wolfram Mathematica. Обчислення границь функції, похідних та інтегралів.

    курсовая работа [1,0 M], добавлен 10.05.2011

  • Математичний опис енергетичної системи, контроль її працездатності. Використання способів Мілна точніше відображає інформацію, за якою ми можемо діагностувати різноманітні процеси та корегувати їх ще до того, як вони почнуть свій вплив на систему.

    курсовая работа [152,2 K], добавлен 21.12.2010

  • Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.

    курсовая работа [347,2 K], добавлен 12.09.2009

  • Поняття полярної системи координат, особливості завдання координат точки у ній. Формули переходу від декартової до полярної системи координат. Запис рівняння заданої кривої в декартовій системі координат з використанням вказаної формули переходу.

    контрольная работа [2,4 M], добавлен 01.04.2012

  • Задачі, ідея та формули методу Лобачевского-Греффе розв’язання рівнянь, особливості конкретні приклади його використання у випадку дійсних різних коренів. Загальні властивості алгебраїчних рівнянь. Загальна характеристика процесу квадратування коренів.

    контрольная работа [118,8 K], добавлен 21.04.2010

  • Поняття та методика визначення геометричного місця точки на площині. Правила та головні етапи процесу застосування даного математичного параметру до розв’язання задач на побудову. Вивчення прикладів задач на відшукання геометричного місця точки.

    курсовая работа [1,4 M], добавлен 12.06.2011

  • Суть та значення аксіоматичної побудови геометрії. Аксіоматика Д. Гільберта евклідової геометрії. Аксіоми сполучення, порядку, конгруентності, неперервності та паралельності. Характеристика різних аксіоматик. Векторна аксіоматика еклідової геометрії.

    курсовая работа [179,9 K], добавлен 17.03.2012

  • Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.

    контрольная работа [179,7 K], добавлен 04.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.