Кривая линия

Определение и способы задания плоской кривой, их классификация и разновидности: парабола, гипербола, эллипс, трансцендентные. Свойства и характеристики кривых линий: обводы и касательные, точки и кривизна. Особенности проекций и подходы к их анализу.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.08.2017
Размер файла 400,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Определение и способы задания плоской кривой

кривая парабола гипербола эллипс

Кривая линия - это множество точек пространства, координаты которых являются функциями одной переменной. Термин «кривая» в разных разделах математики определяется по-разному. В различных областях науки кривую рассматривают как траекторию, описанную движущей точкой, как проекцию другой кривой, как линию пересечения двух поверхностей, как множество точек, обладающих каким-либо общим для всех их свойством, как все непрямые и не ломаные линии и т.д.

В начертательной геометрии кривую линию рассматривают либо как закономерную или случайную траекторию точки, которая движется с изменением направления, либо как составной элемент - линию пересечения двух поверхностей (рис. 1, 2). На рис. 1 показана кривая как результат пересечения плоскости с цилиндрической поверхностью. Безусловно, эта кривая плоская. На рисунке 2 представлена пространственная кривая, полученная в результате пересечения конической и цилиндрической поверхностей. В данной работе рассмотрены только плоские кривые.

Рисунок 1. Плоская кривая Рисунок 2. Пространственная кривая

Проекции незакономерной кривой строятся по проекциям дискретного (прерывистого) ряда ее точек. Кривая может иметь одну ветвь. Чертеж такой кривой будет вполне обратимым при наличии двух проекций.

Если же у пространственной кривой случайного вида две или более ветвей, то для обратимости чертежа задают проекции одной или более точек на кривой. Число точек зависит от числа ветвей - оно равно числу ветвей минус один. Эти точки устанавливают проекционную связь между проекциями ветвей кривой. На эпюре Монжа точка, которая определяет ветвь, не должна занимать экстремального по координате Х положения.

Если закон перемещения точки может быть выражен аналитически в виде уравнения, то образующаяся при этом линия называется закономерной, в противном случае - незакономерной, или графической. Закономерные кривые линии делятся на алгебраические, определяемые алгебраическими уравнениями (эллипс, парабола, гипербола и др.), и трансцендентные, определяемые трансцендентными уравнениями (синусоида, циклоида, спираль Архимеда и др.). Важной характеристикой алгебраической кривой является ее порядок (трансцендентные кривые порядка не имеют). С алгебраической точки зрения порядок кривой линии равен степени ее уравнения, с геометрической - наибольшему числу точек пересечения кривой с прямой линией для плоских кривых и с произвольной плоскостью для пространственных. В число точек пересечения включаются как действительные точки, так и совпавшие и мнимые. Например, эллипс - кривая второго порядка, имеет уравнение x2/a2 + y2/b2 = 1 второй степени, пересекается с прямой максимум в двух точках.

Прямую линию, имеющую уравнение первой степени ax + by + c = 0 (с произвольной прямой пересекается в одной точке), можно рассматривать как линию первого порядка. Кривыми второго порядка являются также окружность, парабола, гипербола. Примерами кривых третьего порядка могут служить строфоида, Декартов лист, циссоида; четвертого - лемниската Бернулли, кардиоида, улитка Паскаля [1].

Начертательная геометрия изучает кривые линии и различные операции с ними по их проекциям на комплексном чертеже. Построение проекций кривой линии сводится к построению проекций ряда ее точек. В общем случае проекции кривой линии являются также кривыми линиями. Кривая линия определяется двумя своими проекциями.

Например, (рис. 3) циклоида - траектория движения точки окружности, катящейся без скольжения по прямой линии. Эта кривая состоит их ряда «арок», каждая из которых соответствует полному обороту окружности.

Кривые линии, все точки которых принадлежат одной плоскости, называются плоскими, остальные пространственными.

Каждая кривая включает в себя геометрические элементы, которые составляют её определитель, т.е. совокупность независимых условий, однозначно определяющих эту кривую.

Рисунок 2. Циклоида

Различны и способы задания кривых:

- Аналитический - кривая задана математическим уравнением;

- Графический - кривая задана визуально на носителе графической информации;

- Табличный - кривая задана координатами последовательного ряда точек.

Уравнением кривой линии называется такое соотношение между переменными, которому удовлетворяют координаты точки, принадлежащей кривой.

2. Классификация плоских кривых

В основу классификации кривых положена природа их уравнений.

Кривые подразделяются на алгебраические и трансцендентные в зависимости от того, являются ли их уравнения алгебраическими или трансцендентными в прямоугольной системе координат.

Плоская кривая линия называется алгебраической, если её уравнение f (xy)=0. Функция f (xy) является степенным множителем относительно переменных х и у; в остальных случаях кривая называется трансцендентной.

Кривая линия, представленная в декартовых координатах уравнением п- й степени, называется алгебраической кривой п-го порядка.

Порядок плоской алгебраической кривой линии определяется наибольшим числом точек её пересечения прямой линией. Любая прямая линия может пересекать алгебраическую кривую линию п-го порядка не более чем в п точках.

Рассмотрим несколько примеров алгебраической кривой линии.

2.1 Парабола

Парабола - кривая второго порядка, прямая пересекает ее в двух точках (рис. 4). При этом парабола может быть определена как:

- множество точек М(xy) плоскости, расстояние FM которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию MN до определенной прямой АN - директрисы параболы;

- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса;

- в прямоугольной системе координат 0 ху с началом в вершине параболы и осью направленной по оси параболы уравнение параболы имеет так называемый канонический вид

y2=2px,

где р (фокальный параметр) - расстояние от фокуса до директрисы.

Рисунок 3. Парабола

2.2 Гипербола

Гипербола:

- множество точек М плоскости (рис. 5) разность (по абсолютной величине) расстояний F1M и F2M которых до двух определенных точек F1 и F2 этой плоскости (фокусов гиперболы) постоянна:

F1M - F2M=2а<2с

Середина 0 отрезка F1F2 (фокусного расстояния) называется центром гиперболы;

- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающая обе его полости;

- в прямоугольной системе координат 0 ху с началом в центре гиперболы, на оси которой лежат фокусы гиперболы уравнение гиперболы имеет так называемый канонический

х2/а2 - у2/в2=1, в2=с2 - а2,

где а и в длинны полуосей гиперболы.

Рисунок 4. Гипербола

2.3 Эллипс

Эллипс:

- множество точек М плоскости (рис. 6), сумма расстояний МF1 и МF2 которых до двух определенных точек F1 и F2 (фокусов эллипса) постоянна

МF1+МF2=2а.

Середина 0 отрезка F1F2 (фокусного расстояния) называется центром эллипса;

- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса;

- в прямоугольной системе координат 0 ху с началом в центре эллипса, на оси которой лежат фокусы эллипса уравнение эллипса имеет следующий вид

х2/а2+у2/в2=1,

где а и в-длинны большой и малой полуосей эллипса. При а=в фокусы F1 и F2 совпадают и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса.

Рисунок 5. Эллипс

Рассмотренные плоские кривые линии, получаемые при пересечении поверхности прямого кругового конуса плоскостями, различно расположенными по отношению к оси конуса, называют кривыми конических сечений.

2.4 Трансцендентные кривые

Трансцендентные кривые в отличие от алгебраических могут иметь бесконечное количество точек пересечения с прямой, точек перегиба, вершин и т.п.

Синусоида - трансцендентная плоская кривая линия (рис. 7), получающаяся в результате двойного равномерного движения точки - поступательного и возвратно-поступательного в направлении, перпендикулярном первому.

Синусоида - график функции у=sin x, непрерывная кривая линия с периодом Т=2п.

Рисунок 6. Синусоида

Наряду с этим у трансцендентных кривых могут быть характерные точки, которых не существует у алгебраических кривых: точки прекращения, угловые точки (точки излома), асимптотические точки. Простейшими примерами трансцендентных кривых служат графики функций логарифмической, показательной тригонометрической, а также все спирали, циклоиды и т.п.

Кривая линия как траектория движущейся точки должна быть непрерывной. Движущаяся точка в любом положении должна иметь определенное направление движения. Это направление указывает прямая (касательная), проходящая через рассматриваемую точку.

Длина отрезка кривой линии определяется в общем случае, как сумма длин отрезков вписанной в нее ломаной линии, с заданной точностью передающей форму кривой.

Особый интерес представляют окружность и цилиндрическая винтовая линии, каждая из которых является эталоном соответственно плоских и пространственных кривых линий.

3. Свойства и характеристики кривых линий

3.1 Обводы и касательные к кривой

В практике конструирования линий и поверхностей широко используются обводы. Это кривые, составленные из дуг различных кривых, определенных парами смежных точек. Обводом ряда точек плоскости является плоская кривая, пространства - пространственная. Точки стыка дуг называются узлами. Обвод, заданный координатами своих точек называется дискретным. Обвод называется гладким, если дуги обвода в узлах имеют общие касательные.

Плоская кривая а построена в плоскости (рис. 8). Через точку А проведены секущие хорды АЕ и АD. Если точку Е приближать к точке А, секущая АЕ поворачивается вокруг точки А. Когда точка Е совпадет с точкой А (А?Е) секущая АЕ достигнет своего предельного положения t. В этом предельном положении секущая называется полукасательной к кривой а в точке А. Секущая АD в предельном положении А?D также представлена полукасательной t.

Рисунок 7. Касательные к кривой линии

Кривая линия в точке А имеет две полукасательные прямые, которые совпадают и определяют одну касательную к кривой линии в точке А - кривая в этой точке называется плавной.

Кривая плавная во всех её точках называется плавной кривой линией.

Нормалью п в точке А кривой линии называется перпендикуляр к касательной.

На кривой линии могут быть точки, где разнонаправленные полукасательные не принадлежат одной прямой, а составляют между собой угол. Так на кривой а в точке В угол д между полукасательными не равен 1800. Точка В в этом случае называется точкой излома или выпадающей точкой.

3.2 Кривизна плоской кривой

Плоскую кривую линию можно рассматривать как траекторию движения точки в плоскости (рис. 9); точка движется по касательной к кривой линии, обкатывая эту кривую без скольжения.

Движение точки вдоль кривой а связано с непрерывным изменением двух величин: расстояния S, на которое удалена точка от начального положения и угла б поворота касательной относительно начального положения.

Если с увеличением пути S непрерывно увеличивается и б, кривая называется простой.

Угол б (угол смежности) между касательными в двух бесконечно близких точках кривой, отнесенный к длине дуги между этими точками, определяет степень искривленности кривой линии, т.е. определяет кривизну кривой.

Кривизна кривой определяется как предел отношения угла смежности касательных к соответствующей дуге.

,

Кривизна прямой в любой её точке равна нулю.

Кривизна произвольной кривой линии в различных точках различна, в отдельных точках она может быть равна нулю. Такие точки называются точками спрямления.

Рисунок 8. Кривая линия как траектория движения точки

Кривизна в каждой из точек плоской кривой а определяется с помощью соприкасающейся в этой точке окружности (рис. 10).

Рисунок 9. Кривизна кривой

Соприкасающейся окружностью или кругом кривизны в данной точке называется предельное положение окружности, когда она проходит через данную точку и две другие бесконечно близкие к ней точки.

Центр соприкасающейся окружности называется центром кривизны кривой в данной точке, а радиус такой окружности - радиусом кривизны кривой линии в данной точке.

Множество центров кривизны кривой является кривая линия - её называют эволютой данной кривой, а кривая по отношению к своей эволюте называется эвольвентой.

3.3 Точки кривых линий

Точки кривой бывают обыкновенными (регулярными) и особыми. Точка кривой называется обыкновенной, если в этой точке можно построить единственную касательную. В противном случае она - особая.

Как уже сказано выше, кривая, которая состоит только из обыкновенных точек, называется монотонной, плавной или гладкой.

кривая парабола гипербола эллипс

Рисунок 10. Особые точки кривой

Особые точки показаны на рис. 11: a - узловая, b - точка возврата первого рода, c - точка возврата второго рода (клюв), d - точка самоприкосновения, e - точка перегиба. Синим цветом на чертеже изображены касательные.

Необходимо помнить, что касательная к кривой проецируется в касательную к проекциям кривой.

При ортогональном проецировании порядок плоской алгебраической кривой не изменяется независимо от наклона их к плоскостям проекций: окружность проецируется в окружность или эллипс, эллипс проецируется в окружность или эллипс, парабола в параболу, гипербола в гиперболу. Исключение составляют вырожденные в прямую проекции этих плоских кривых, если их плоскости являются проецирующими.

3.4 Свойства проекций кривых линий

1. Проекцией кривой линии является кривая линия;

2. Касательная к кривой линии проецируется в касательную к её проекции;

3. Несобственная точка кривой проецируется в несобственную точку её проекции;

4. Порядок линии - проекции алгебраической кривой равен порядку самой кривой или меньше;

5. Число узловых точек (в которых кривая пересекает сама себя) проекции равно числу узловых точек самой кривой.

Случаи когда, плоская кривая проецируется в прямую (свойства 1,4,5), а касательная в точку (свойство 2) не учитываются.

Список использованной литературы

1. Савелон А.А. Плоские кривые: Справочное руководство. - М.: Государственное издательство физико-математической литературы, 1960.

2. Сенигов Н.П. Гусятникова Т.В. Методика решения задач по начертательной геометрии. - Челябинск: 1983.

3. Посвянский А.Д. Краткий курс начертательной геометрии. - М.; Высшая школа, 1974.

4. Фролов С.А. Начертательная геометрия. - М.: Машиностроение, 1983.

5. Бубенников А.В., Громов М.Я. Начертательная геометрия. - М.: Высшая школа, 1973.

Размещено на Allbest.ru

...

Подобные документы

  • Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.

    реферат [202,6 K], добавлен 26.01.2011

  • Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.

    курсовая работа [132,1 K], добавлен 14.10.2011

  • Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

    лекция [160,8 K], добавлен 17.12.2010

  • Регулярная кривая и ее отдельные точки. Касательная к кривой и соприкасающаяся плоскость. Эволюта и эвольвента плоской кривой. Кривые на плоскости, заданные уравнением в неявной форме. Примеры точки возврата; понятие асимптоты и полярных координат.

    курсовая работа [936,1 K], добавлен 21.08.2013

  • Окружность множество точек плоскости, равноудаленных от данной точки. Эллипс, множество точек плоскости, для каждой из которых сумма расстояний до двух точек плоскости. Парабола, множество точек плоскости, равноудаленных от данной точки плоскости.

    реферат [197,7 K], добавлен 03.08.2010

  • Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

    контрольная работа [329,5 K], добавлен 19.12.2014

  • Образование конических сечений. Основное свойство и уравнение эллипса, исследование формы по его уравнению. Исследование форм параболы по ее уравнению. Директориальное свойство конических сечений. Эллипс, гипербола и парабола как конические сечения.

    курсовая работа [156,7 K], добавлен 08.11.2013

  • Линия - общая часть двух смежных областей поверхности. Характеристика спиралей – плоских кривых линий. Кардиоида как плоская линия, описываемая фиксированной точкой окружности. Описание циклоида и астроида. Синусоидальная спираль как семейство кривых.

    контрольная работа [268,4 K], добавлен 17.11.2010

  • Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.

    презентация [301,4 K], добавлен 10.11.2014

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Понятие и свойства плоских кривых, история их исследований, способы их образования, разновидности и свойства нормали. Методы построения некоторых видов кривых, называемых "Декартов лист", лемнискаты Бернулли, улитки Паскаля, строфоиды, циссоиды Диокла.

    курсовая работа [3,1 M], добавлен 29.03.2011

  • Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.

    учебное пособие [3,6 M], добавлен 07.01.2012

  • Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.

    курсовая работа [654,1 K], добавлен 28.09.2019

  • Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.

    дипломная работа [906,7 K], добавлен 24.02.2010

  • История развития учения о линиях. Замечательные линии третьего порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска.

    курсовая работа [1,7 M], добавлен 12.06.2011

  • Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.

    контрольная работа [133,5 K], добавлен 12.01.2011

  • Интеграл по кривой, заданной уравнением y=y(x). Вычисление криволинейного интеграла. Кривая от точки А к В при изменении параметра. Непрерывные функции со своими производными. Отрезок параболы, заключенный между точками. Решение разными методами.

    презентация [44,4 K], добавлен 17.09.2013

  • Основные виды сечения конуса. Сечение, образованное плоскостью, проходящей через ось конуса (осевое) и через его вершину (треугольник). Образование сечения плоскостью, параллельной (парабола), перпендикулярной (круг) и не перпендикулярной (эллипс) оси.

    презентация [137,9 K], добавлен 12.12.2013

  • Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.

    дипломная работа [2,0 M], добавлен 18.05.2013

  • Понятие и классификация кривых Безье, их разновидности и методика, основные этапы построения. Порядок и условия применения данных кривых в компьютерной графике. Преобразование квадратичных кривых в кубические. Финитные функции. В-сплайны Шёнберга.

    реферат [456,6 K], добавлен 14.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.