Дуальные числа

Алгебра дуальных чисел. Операции сложения и вычитания для дуальных чисел. Разность параметров делимого и делителя. Основное свойство мультипликативности. Закон отображения области определения в область значений. Классическое определение дифференциала.

Рубрика Математика
Вид разработка урока
Язык русский
Дата добавления 21.08.2017
Размер файла 92,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Дуальные числа

1. Определение дуальных чисел

Алгебра дуальных чисел образуется удвоением по Кэли алгебры действительных чисел:

Q = D1 + E * D2

С мнимой единицей удвоения E2=0. Дуальное число есть пара действительных чисел, которые называют его компонентами. Обычно дуальную мнимую единицу обозначают буквой . Тогда дуальное число может быть представлено:

В такой записи дуального числа q его компоненты q0 и q1 называются действительной (или главной) и дуальной (или мнимой) частями соответственно. Таблица произведений единиц базиса дуальных чисел имеет вид:

1

1

1

0

Дуальные числа q и p считаются равными, если равны их компоненты:

Дуальное число p равно нулю в случае, если p0=0 и p1=0 .

Как и для других гиперкомплексных чисел, операции сложения и вычитания для дуальных чисел определяются покомпонентно:

Мнимую часть дуального числа также иногда называют моментной частью, а отношение мнимой части к действительной называют параметром:

, или

если

2. Свойства дуальных чисел

В силу определения мнимой единицы І = 0 для умножения дуальных чисел получаем формулу:

Для деления p/q при q0 0 получим:

Для возведения дуального числа в степень справедлива формула:

Для извлечения корня степени n из дуального числа p справедлива формула:

В случае же p0 = 0 операция извлечения корня не определена.

Для параметра дуального числа справедливы два интересных соотношения:

Параметр произведения дуальных чисел равен сумме параметров сомножителей:

Параметр частного двух дуальных чисел равен разности параметров делимого и делителя:

Так как для числа p где параметр равен бесконечности и, поскольку действительная часть произведения равна произведению действительных частей, действительную часть дуального числа принято называть модулем дуального числа:

При таком выборе определения модуля для дуального числа сохраняется его основное свойство мультипликативности:

3. Функция и дифференциал функции

Будем следовать классическому определению функции как закону отображения области определения в область значений. В случае, если областью определения и областью значений является область дуальных чисел, функцию можно представить покомпонентно:

где f1 и f2 - две вещественные функции двух аргументов.

К основному соотношению в функциональном анализе гиперкомплексных чисел относят аналог уравнений Эйлера. Мы также присоединяюсь к этому мнению в силу чрезвычайной важности этого соотношения:

и для случая дуальных чисел имеем:

В частности,

Для элементарных функций дуального аргумента справедливы соотношения:

Для дифференциала функции дуального аргумента также используем класическое определение дифференциала как разность значений функции до и после приращения аргумента:

4. Аналог уравнений Коши-Римана

В теории функций комплексного переменного особую важность имеют аналитические функции, для которых предел отношения приращения функции к приращению аргумента не зависит от отношения мнимой и действительной частей приращения аргумента. Что на комплексной плоскости иллюстрируется независимостью производной от направления приращения аргумента. Обозначив производную функции f как f', получим:

В теории конформных отображений сей факт может быть трактован геометрически - угол между направлением приращения функции и направлением приращения аргумента зависит только от точки, в которой взята производная.

Рассмотрим аналогичное требование для случая дуального переменного и посмотрим, что из этого получится:

Чтобы удовлетворить поставленному ограничению, следует положить равными нулю множители перед dx1/dx0 . Тогда получим:

Эти соотношения и есть аналог уравнений Коши-Римана для функций дуального переменного. Из первого из этих соотношений вытекает, что функция f0 есть функция только переменной x0:

А из второго - выражение для f1:

Где (x0) - некоторая функция только одного переменного x0.

Таким образом, общее выражение функции дуального переменного

,

удовлетворяющее независимости производной от направления приращения аргумента, будет иметь вид:

В случае вещественного x (x1=0) функция будет иметь вид:

Положим, что в общем случае функция дуального переменного зависит также от дуальных параметров A, B, C, ... и определим её с помощью ряда Тейлора, в котором * x1играет роль приращения и положим равными нулю все члены, содержащие в степени выше первой.

Сравнив с выражением для функции одного переменного, получим:

Действительная часть функции равна функции от действительных частей величин, от которых она зависит. Также из приведенных соотношений можно сделать важный вывод, а именно: функция дуальной переменной x = x0 + * x1 полностью определяется функцией от главной части переменной, x0. Отсюда также следует, что если главные части двух функций тождественно равны, то равны и сами эти функции.

Используя соотношения Коши-Римана для функций дуального переменного, можем получить выражение для производной функции f(x):

Таким образом, дифференцирование по дуальной переменной x сводится к дифференцированию по вещественной переменной x0.

Если некоторая функция (x), являющаяся главной частью F(x), тождественно равна , то отсюда будет следовать, что функция F(x) будет равна df/dx. Дифференцируя равенство

и

по x, на основании равенства = , получим:

Откуда получим:

Если F - функция дуальной переменной x и дуальных параметров A, B, C, ..., то функцию G от тех же величин, тождественно удовлетворяющую уравнению

назовем интегралом от Fdx и обозначим так:

Отсюда следует, что

Таким образом, в области дуальных чисел сохраняются все теоремы дифференциального и интегрального исчислений. Приведем основные соотношения для элементарных функций:

5. Оператор дифференцирования в области дуальных чисел

Обратим внимание на форму классического определения производной функции:

Здесь d/dx - обозначено специальное математическое понятие - функциональный оператор, или отображение одной функции (из области определения оператора) на другую (из области значений оператора).

Зададимся вопросом - можно ли составить аналогичный оператор для функций дуального переменного? Распишем выражение для производной покомпонентно:

Сопоставив с уравнениями Коши-Римана, получим равенство:

Таким образом, составной оператор дифференцирования функции дуального переменного имеет вид:

Как и следовало ожидать, подтверждается тот факт, что функция дуального переменного полностью определяется функцией от главной части переменной:

что в силу условий Коши-Римана равно:

Отметим, что в отличие от комплексных и паракомплексных чисел, гиперкомплексный оператор дифференцирования в области дуальных чисел не получает множителя 1/2 перед своими компонентами. В области комплексных чисел гиперкомплексный оператор дифференцирования имеет вид:

В области паракомплексных чисел гиперкомплексный оператор дифференцирования имеет вид:

Этот факт объясняется тем, что для составления полного оператора дифференцирования следует использовать различные виды дифференцирования - как по переменной, так и по сопряженной переменной. В случае же дуальных чисел сопряженные числа различаются с числами только с точки зрения алгебраических операций. Операция же дифференцирования в области функций дуальных чисел такого сопряжения не различает, поскольку, повторимся еще раз, функция дуального переменного полностью определяется функцией от главной части переменной.

Литература

1. Ф. Диментберг, Винтовое исчисление, М., 1968.

2. А. Золоторев, Дуальные числа, Л., 1989.

3. Р. Рейнсберг, Квадратичные пространства над алгеброй дуальных чисел., М., 1975.

Размещено на Allbest.ru

...

Подобные документы

  • Определение операций сложения, вычитания и умножения для дуальных чисел. Определение модуля и сопряжённого числа. Деление на дуальное число. Определение делителя нуля. Запись дуального числа в форме, близкой к тригонометрической форме комплексного числа.

    курсовая работа [507,8 K], добавлен 10.04.2011

  • История комплексных чисел. Соглашение о комплексных числах. Геометрический смысл сложения и вычитания комплексных чисел. Геометрическая интерпретация комплексных чисел. Длина отрезка. Уравнение высших степеней, уравнение деления круга на пять частей.

    реферат [325,7 K], добавлен 25.10.2012

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция [268,6 K], добавлен 07.05.2013

  • Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.

    презентация [147,4 K], добавлен 17.09.2013

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

  • Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.

    презентация [422,7 K], добавлен 02.06.2013

  • Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.

    презентация [60,3 K], добавлен 17.09.2013

  • Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.

    курсовая работа [79,8 K], добавлен 27.07.2015

  • Збагачення запасу чисел, введення ірраціональних чисел. Зведення комплексних чисел у ступінь і знаходження кореня. Окремий випадок формули Муавра. Труднощі при витягу кореня з комплексних чисел. Витяг квадратного кореня із негативного дійсного числа.

    курсовая работа [130,8 K], добавлен 26.03.2009

  • Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

    статья [406,8 K], добавлен 28.03.2012

  • Числа натурального ряда, их закономерное периодическое изменение: сведение бесконечного к конечному путем выявления периодичности. Обоснование метода поиска простых чисел с помощью "решета" Баяндина. Закон динамического сохранения относительных величин.

    книга [359,0 K], добавлен 28.03.2012

  • Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.

    курсовая работа [345,5 K], добавлен 22.06.2015

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация [435,9 K], добавлен 16.12.2011

  • Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

    курсовая работа [8,2 M], добавлен 14.09.2015

  • Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.

    реферат [75,3 K], добавлен 22.02.2010

  • Доказательства существования иррациональных чисел. Арифметический подход Евклида к множеству иррациональных чисел. Рассуждения Дедекинда о непрерывности области вещественных чисел, неявном понятии точной верхней грани. Анализ бесконечно малых величин.

    реферат [1,9 M], добавлен 08.05.2012

  • Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.

    курсовая работа [584,5 K], добавлен 18.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.