Прикладная математика

Системы счисления, понятие множества. Операции над множествами. Графическое изображение множеств, диаграммы Эйлера-Венна. Таблицы истинности высказываний. Расчет бинарного отношения между множествами А и В. Частота появления значения случайной величины.

Рубрика Математика
Вид шпаргалка
Язык русский
Дата добавления 30.08.2017
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Понятие числа. Виды чисел

2. Системы счисления

3. Понятие множества

4. Способы задания множеств

5. Числовые множества

6. Мощность множества. Приведите примеры конечных и бесконечных множеств

7. Подмножества указанного множества

8. Операции над множествами

9. Графическое изображение множеств. Диаграммы Эйлера-Венна

10. Декартово произведение множеств

11. Понятие высказывания. Элементарные и составные высказывания

12. Операции над высказываниями

13. Таблицы истинности высказываний

14. Равносильные формулы

15. Формулы логики высказываний

16. Предикаты и операции над ними. Кванторы

17. Определение бинарного отношения между множествами А и В

18. Способы задания бинарных отношений

19. Рефлексивность бинарного отношения. Пример

20. Симметричность бинарного отношения. Пример

21. Антисимметричные бинарные отношения. Пример

22. Транзитивные бинарные отношения. Пример

23. Отношение эквивалентности. Пример

24. Понятие функции. Область определения и область значения функции

25. Отношение частичного порядка. Пример

26. Инъекция, сюръекция и биекция

27. Испытания и исход

28. Частота появления события

29. Статистическое определение вероятности

30. Случайная величина. Вероятность, математическое ожидание, дисперсия, среднеквадратичное отклонение

31. Таблица случайных величин. Частота появления значения случайной величины

32. Нормальный закон распределения

33. Объем генеральной совокупности и выборки

34. Случайный выбор. Репрезентативность

35. Идея выборочного распределения

36. Статистическое распределение выборки

37. Виды статистических оценок

38. Доверительный интервал

39. Доверительная вероятность

40. Зависимые и независимые случайные величины

41. Коэффициент корреляции

42. Регрессия

43. Построение линейной корреляции

44. Оценки числовых характеристик генеральной совокупности

45. Статистические гипотезы

46. Статистические критерии оценки гипотез

1. Понятие числа. Виды чисел

счисление множество истинность высказывание

Число -- абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа - это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Целые числа - это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей - натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, чтоZ={1,2,3,....}.

Рациональные числа - это числа, представимые в виде дроби, где m -- целое число, а n -- натуральное число. Для обозначения рациональных чисел используется латинская буква Q. Все натуральные и целые числа - рациональные.

Действительные (вещественные) числа - это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа - это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными.

2. Системы счисления

Система счисления - способ наименования и записи чисел. В зависимости от способа изображения чисел разделяется на позиционные-десятичная и непозиционные-римская.

В ПК используют 2ичную, 8ричную и 16ричную системы счисления.

Отличия:запись числа в 16ной системе счисленич по сравнению с другой записью значительно короче, т.е. требует меньшего количества разрядности.

В позиционной системе счисления каждая цифра сохраняет свое постоянное значение независимо от занимаемой позиции в числе. В позиционной системе счисления каждая цифра определяет не только свое значение, но зависит от того положения, которое она занимает в числе. Каждая система счисления характеризуется основанием. Основание- это количество различных цифр, которые используются для записи чисел в данной системе счисления. Основание показывает во сколько раз изменяется значение одной и той же цифры при переходе на соседнюю позицию. В компьютере используется 2-система счисления. Основанием системы может быть любое число. Арифметические дей-ия над числами в любой позиции выполняются по правилам аналогичным 10 системе счисления. Для 2 системы счисления используется двоичная арифметика, которая реализуется в компьютере для выполнения арифметических вычислений.

Сложение двоичных чисел:0+0=1;0+1=1;1+0=1;1+1=10

Вычитание:0-0=0;1-0=1;1-1=0;10-1=1

Умножение:0*0=0;0*1=0;1*0=0;1*1=1

В компьютере широко применяется 8 система счисления и 16 система счисления. Они используются для сокращения записи двоичных чисел

3. Понятие множества

Понятие «множество» является фундаментальным понятием математики и не имеет определения. Природа порождения любого множества разнообразна, в частности, окружающие предметы, живая природа и др.

Определение 1: Объекты, из которых образовано множество, называются элементами данного множества. Для обозначения множества используют заглавные буквы латинского алфавита: например X, Y, Z, а в фигурных скобках через запятую выписывают его элементы строчными буквами, например: {x,y,z}.

Пример обозначения множества и его элементов:

X = {x1, x2,…, xn} - множество, состоящее из n элементов. Если элемент x принадлежит множеству X, то следует записать: xОX, иначе элемент x не принадлежит множеству X, что записывается: xПX. Элементами абстрактного множества могут быть, например, числа, функции, буквы, фигуры и т.д. В математике в любом разделе используется понятие множества. В частности, можно привести некоторые конкретные множества вещественных чисел. Множество вещественных чисел х, удовлетворяющих неравенствам:

· а ? x ? b называется сегментом и обозначается [a,b];

· а ? x < b или а < x ? b называется полусегментом и обозначается: [a,b) или (a,b];

· а < x < b называется интервалом и обозначается (a,b).

Определение 2: Множество, имеющее конечное число элементов, называется конечным. Пример. X = {x1, x2, x3}.

Определение 3: Множество называется бесконечным, если оно состоит из бесконечного числа элементов. Например, множество всех вещественных чисел бесконечно. Пример записи. X = {x1, x2, ...}.

Определение 4: Множество, в котором нет ни одного элемента, называют пустым множеством и обозначают символом Ж.

Характеристикой множества является понятие мощности. Мощность - это количество его элементов. Множество Y={y1, y2,...} имеет ту же мощность, что и множество X={x1, x2,...}, если существует взаимно однозначное соответствие y= f(x) между элементами этих множеств. Такие множества имеют одинаковую мощность или равномощны. Пустое множество имеет нулевую мощность.

4. Способы задания множеств

Считают, что множество задано своими элементами, т.е. множество задано, если о любом объекте можно сказать: принадлежит он этому множеству или не принадлежит. Задавать множество можно следующими способами:

1) Если множество конечно, то его можно задать перечислением всех его элементов. Так, если множество А состоит из элементов 2, 5, 7, 12, то пишут А = {2, 5, 7, 12}. Количество элементов множества А равно 4, пишут n(А) = 4.

Но если множество бесконечно, то его элементы нельзя перечислить. Трудно задать множество перечислением и конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множества.

2) Множество можно задать указанием характеристического свойства его элементов. Характеристическое свойство - это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, не принадлежащий ему. Рассмотрим, например, множество Х двузначных чисел: свойство, которым обладает каждый элемент данного множества, - «быть двузначным числом». Это характеристическое свойство дает возможность решать о том, принадлежит какой-либо объект множеству Х или не принадлежит. Например, число 45 содержится в данном множестве, т.к. оно двузначное, а число 4 множеству Х не принадлежит, т.к. оно однозначное и не является двузначным. Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными сторонами и как множество ромбов с прямым углом.

В тех случаях, когда характеристическое свойство элементов множества можно представить в символической форме, возможна соответствующая запись. Если множество В состоит из всех натуральных чисел, меньших 10, то пишут В = {xN| x <10}.

Второй способ - более общий и позволяет задавать как конечные, так и бесконечные множества.

5. Числовые множества

Числовое - множество, элементами которых являются числа. Числовые множества задаются на оси действительных чисел R. На этой оси выбирают масштаб и указывают начало отсчета и направление. Наиболее распространенные числовые множества:

· - множество натуральных чисел;

· - множество целых чисел;

· - множество рациональных или дробных чисел;

· - множество действительных чисел.

6. Мощность множества. Приведите примеры конечных и бесконечных множеств

Множества называются равномощными, эквивалентными, если между ними есть взаимно - однозначное или одно-однозначное соответствие, то есть такое попарное соответствие. когда каждому элементу одного множества сопоставляется один-единственный элемент другого множества и наоборот, при этом различным элементам одного множества сопоставляются различные элементы другого.

Например, возьмём группу студентов из тридцати человек и выдадим экзаменационные билеты по одному билету каждому студенту из стопки, содержащей тридцать билетов, такое попарное соответствие из 30 студентов и 30 билетов будет одно-однозначным.

Два множества, равномощные с одним и тем же третьим множеством, равномощны. Если множества M и N равномощны, то и множества всех подмножеств каждого из этих множеств M и N , также равномощны.

Под подмножеством данного множества понимается такое множество, каждый элемент которого является элементом данного множества. Так множество легковых автомобилей и множество грузовых автомобилей будут подмножествами множества автомобилей.

Мощность множества действительных чисел, называют мощностью континуума и обозначают буквой «алеф» а . Наименьшей бесконечной областью является мощность множества натуральных чисел. Мощность множества всех натуральных чисел принято обозначать (алеф-нуль) .

Часто мощности называют кардинальными числами. Это понятие введено немецким математиком Г. Кантором. Если множества обозначают символическими буквами M, N , то кардинальные числа обозначают через m, n . Г.Кантор доказал, что множество всех подмножеств данного множества М имеет мощность большую, чем само множество М.

Множество, равномощное множеству всех натуральных чисел, называется счетным множеством.

7. Подмножества указанного множества

Если из нашего множества выбрать несколько элементов и сгруппировать их отдельно - то это будет подмножество нашего множества. Комбинаций, из которых можно получить подмножество много, количество комбинаций лишь зависит от количества элементов в исходном множестве.

Пусть у нас есть два множества А и Б. Если каждый элемент множества Б является элементом множества А, то множество Б называется подмножеством А. Обозначается: Б ? А. Пример.

Сколько существует подмножеств множества А=1;2;3.

Решение. Подмножества состоя из элементов нашего множества. Тогда у нас существует 4 варианта по количеству элементов в подмножестве:

Подмножество может состоять из 1 элемента, из 2, 3 элементов и может быть пустым. Давайте последовательно запишем наши элементы.

Подмножество из 1 элемента: 1,2,3

Подмножество из 2 элементов:1,2,1,3,2,3.

Подмножество из 3 элементов:1;2;3

Не забудем, что пустое множество так же является подмножеством нашего множества. Тогда получаем, что у нас есть 3+3+1+1=8 подмножеств.

8. Операции над множествами

Над множествами можно выполнять определенные операции, подобные в некотором отношении операциям над действительными числами в алгебре. Поэтому можно говорить об алгебре множеств.

Объединением (соединением) множеств А и В называется множество (символически оно обозначается через ), состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А или В. В форме от х объединение множеств записывается так

Запись читается: «объединение А и В» или «А, объединенное с В».

Операции над множествами наглядно изображают графически с помощью кругов Эйлера (иногда используют термин «диаграммы Венна-Эйлера»). Если все элементы множества А будут сосредоточены в пределах круга А, а элементы множества В - в пределах круга В, тооперацию объединения с помощью кругов Эйлера можно представить в следующем виде

Пример 1. Объединением множества А = {0, 2, 4, 6, 8} четных цифр и множества В = {1, 3, 5, 7, 9} нечетных цифр является множество = ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} всех цифр десятичной системы счисления.

9. Графическое изображение множеств. Диаграммы Эйлера-Венна

Диаграммы Эйлера-Венна - геометрические представления множеств. Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U, а внутри его - кругов (или каких-нибудь других замкнутых фигур), представляющих множества. Фигуры должны пересекаться в наиболее общем случае, требуемом в задаче, и должны быть соответствующим образом обозначены. Точки, лежащие внутри различных областей диаграммы, могут рассматриваться как элементы соответствующих множеств. Имея построенную диаграмму, можно заштриховать определенные области для обозначения вновь образованных множеств.

Операции над множествами рассматриваются для получения новых множеств из уже существующих.

Определение. Объединением множеств А и В называется множество, состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А, В (рис. 1):

Определение. Пересечением множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат одновременно как множеству А, так и множеству В (рис. 2):

Определение. Разностью множеств А и В называется множество всех тех и только тех элементов А, которые не содержатся в В (рис. 3):

Определение. Симметрической разностью множеств А и В называется множество элементов этих множеств, которые принадлежат либо только множеству А, либо только множеству В (рис. 4):

10. Декартово произведение множеств

Декартовым (или прямым) произведением множеств A и B называется такое результирующее множество пар вида (x,y) , построенных таким образом, что первый элемент из множества A , а второй элемент пары -- из множества B . Общепринятое обозначение:

AЧB={(x,y)|x?A,y?B}

Произведения трёх и более множеств можно построить следующим образом:

AЧBЧC={(x,y,z)|x?A,y?B,z?C}

Произведения вида AЧA,AЧAЧA,AЧAЧAЧA и т.д. принято записывать в виде степени: A 2 ,A 3 ,A 4 (основание степени -- множество-множитель, показатель -- количество произведений). Читают такую запись как «декартов квадрат» (куб и т.д.). Существуют и другие варианты чтения для основных множеств. К примеру, R n принято читать как «эр энное».

Свойства

Рассмотрим несколько свойств декартова произведения:

1. Если A,B -- конечные множества, то AЧB -- конечное. И наоборот, если одно из множеств-сомножителей бесконечное, то и результат их произведения -- бесконечное множество.

2. Количество элементов в декартовом произведении равно произведению чисел элементов множеств-сомножителей (в случае их конечности, разумеется): |AЧB|=|A|?|B| .

3. A np ?(A n ) p -- в первом случае целесообразно рассмотреть результат декартова произведения как матрицу размеров 1Чnp , во втором же -- как матрицу размеров nЧp .

4. Коммутативный закон не выполняется, т.к. пары элементов результата декартова произведения упорядочены: AЧB?BЧA .

5. Ассоциативный закон не выполняется: (AЧBC?AЧ(BЧC) .

6. Имеет место дистрибутивность относительно основных операциях на множествах: (A?BC=(AЧC)?(BЧC),??{?,?,?}

11. Понятие высказывания. Элементарные и составные высказывания

Высказывание- это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно (И-1) или ложно (Л-0), но не то и другое одновременно.

Например, «Сегодня идет дождь», «Иванов выполнил лабораторную работу №2 по физике».

Если у нас имеется несколько исходных высказываний, то из них при помощи логических союзов или частиц мы можем образовывать новые высказывания, истинностное значение которых зависит только от истинностных значений исходных высказываний и от конкретных союзов и частиц, которые участвуют в построении нового высказывания. Слова и выражения «и», «или», «не», «если ... , то», «поэтому», «тогда и только тогда» являются примерами таких союзов. Исходные высказывания называются простыми, а построенные из них с помощью тех или иных логических союзов новые высказывания - составными. Разумеется, слово «простые» никак не связано с сутью или структурой исходных высказываний, которые сами могут быть весьма сложными. В данном контексте слово «простой» является синонимом слова «исход-ный». Важно то, что значения истинности простых высказываний предполагаются известными или заданными; в любом случае они никак не обсуждаются.

Хотя высказывание типа «Сегодня не четверг» не составлено из двух различных простых высказываний, для единообразия конструкции оно также рассматривается как составное, по-скольку его истинностное значение определяется истинностным значением другого высказыва-ния «Сегодня четверг»

Пример 2. Cледующие высказывания рассматриваются как составные:

Я читаю «Московский комсомолец» и я читаю «Коммерсант».

Если он сказал это, значит, это верно.

Солнце не является звездой.

Если будет солнечно и температура превысит 250, я приеду поездом или автомобилем

Простые высказывания, входящие в составные, сами по себе могут быть совершенно произвольными. В частности, они сами могут быть составными. Описываемые ниже базисные типы составных высказываний определяются независимо от образующих их простых высказываний.

12. Операции над высказываниями

1. Операция отрицания.

Отрицанием высказывания А называется высказывание, обозначаемое (читается «не А», «неверно, что А»), которое истинно, когда А ложно и ложно, когда А - истинно.

Отрицающие друг друга высказывания А и называются противоположными.

2. Операция конъюнкции.

Конъюнкцией высказываний А и В называется высказывание, обозначаемое АВ (читается «А и В»), истинные значения которого определяются в том и только том случае, когда оба высказывания А и В истинны.

Конъюнкцию высказываний называют логическим произведением и часто обозначают АВ.

Пусть дано высказывание А - «в марте температура воздуха от 0С до +7С» и высказывание В - «в Витебске идет дождь». Тогда АВ будет следующей: «в марте температура воздуха от 0С до +7С и в Витебске идет дождь». Данная конъюнкция будет истинной, если будут высказывания А и В истинными. Если же окажется, что температура была меньше 0С или в Витебске не было дождя, то АВ будет ложной.

3. Операция дизъюнкции.

Дизъюнкцией высказываний А и В называется высказывание АВ (А или В), которое истинно тогда и только тогда, когда хотя бы одно из высказываний истинно и ложно - когда оба высказывания ложны.

Дизъюнкцию высказываний называют также логической суммой А+В.

Высказывание «4<5 или 4=5» является истинным. Так как высказывание «4<5» - истинное, а высказывание «4=5» - ложное, то АВ представляет собой истинное высказывание «45».

4. Операция импликации.

Импликацией высказываний А и В называется высказывание АВ («если А, то В», «из А следует В»), значение которого ложно тогда и только тогда, когда А истинно, а В ложно.

В импликации АВ высказывание А называют основанием, или посылкой, а высказывание В - следствием, или заключением.

13. Таблицы истинности высказываний

Таблица истинности - это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и значениями функции.

Таблицы истинности применяются для:

- вычисления истинности сложных высказываний;

- установления эквивалентности высказываний;

- определения тавтологий.

1. Установление истинности сложных высказываний.

Пример 1. Установить истинность высказывания · С

Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.

При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А

В

С

А+

· С

0

0

0

1

1

0

0

0

0

1

1

1

0

0

0

1

0

0

0

1

0

0

1

1

0

0

1

1

1

0

0

1

1

0

0

1

0

1

1

1

0

0

1

1

0

0

1

0

0

1

1

1

0

1

0

0

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

14. Равносильные формулы

Две формулы А и В называются равносильными, если они принимают одинаковые логические значения при любом наборе значений входящих в формулу элементарных высказываний.

Равносильность обозначается знаком «». Для преобразования формул в равносильные важную роль играют основные равносильности, выражающие одни логические операции через другие, равносильности, выражающие основные законы алгебры логики.

Для любых формул А, В, С справедливы равносильности.

I. Основные равносильности

закон идемпотентности

1-истина

0-ложь

закон противоречия

закон исключенного третьего

закон поглощения

формулы расщепления

закон склеивания

II. Равносильности, выражающие одни логические операции через другие.

закон де Моргана

III. Равносильности, выражающие основные законы алгебры логики.

коммутативный закон

ассоциативный закон

дистрибутивный закон

15. Формулы логики высказываний

Виды формул классической логики высказываний - в логике высказываний различают следующие виды формул:

1. Законы (тождественно-истинные формулы) - формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «истинно»;

2. Противоречия (тождественно-ложные формулы) - формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «ложно»;

3. Выполнимые формулы - такие, которые принимают значение «истинно» хотя бы при одном наборе значений истинности входящих в их состав пропозициональных переменных.

Основные законы классической логики высказываний:

1. Закон тождества:

;

2. Закон противоречия:

;

3. Закон исключенного третьего:

;

4. Законы коммутативности и :

, ;

5. Законы дистрибутивности относительно ,и наоборот:

, ;

6. Закон удаления истинного члена конъюнкции:

;

7. Закон удаления ложного члена дизъюнкции:

;

8. Закон контрапозиции:

;

9. Законы взаимовыразимости пропозициональных связок:

,

,

,

,

.

Процедура разрешимости - метод, позволяющий для каждой формулы установить является она законом, противоречием или выполнимой формулой. Самой распространенной процедурой разрешимости является метод истинностных таблиц. Однако он не единственный. Эффективным методом разрешимости является метод нормальных форм для формул логики высказываний. Нормальной формой формулы логики высказываний является форма, не содержащая знака импликации «». Различают конъюнктивную и дизъюнктивную нормальные формы. Конъюнктивная форма содержит только знаки конъюнкции «». Если в формуле, приведенной к конъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является противоречием. Дизъюнктивная форма содержит только знаки дизъюнкции «». Если в формуле, приведенной к дизъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является законом. Во всех остальных случаях формула является выполнимой формулой.

16. Предикаты и операции над ними. Кванторы

Предложение, содержащее одну или несколько переменных и которое при конкретных значениях переменных является высказыванием, называется высказывательной формой или предикатом.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, обозначаемые соответственно: А(х), В(х, у), С(х, у, z).

Если задан некоторый предикат, то с ним связаны два множества:

1. Множество (область) определения Х, состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание. При задании предиката обычно указывают его область определения.

2. Множество истинности Т, состоящее из всех тех значений переменных, при подстановке которых в предикат получается истинное высказывание.

Множество истинности предиката всегда является подмножеством его области определения, то есть .

Над предикатами можно совершать те же операции, что и над высказываниями.

1. Отрицаниемпредиката А(х), заданного на множестве Х, называется предикат , истинный при тех значениях , при которых предикат А(х) обращается в ложное высказывание, и наоборот.

Из данного определения следует, что предикаты А(х) и В(х) не являются отрицаниями друг друга, если найдется хотя бы одно значение , при котором предикаты А(х) и В(х) обращаются в высказывания с одинаковыми значениями истинности.

Множество истинности предиката является дополнением к множеству истинности предиката А(х). Обозначим через ТА множество истинности предиката А(х), а через Т - множество истинности предиката . Тогда .

2. Конъюнкциейпредикатов А(х) и В(х), заданных на множестве Х, называется предикат А(х) В(х), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых оба предиката обращаются в истинные высказывания.

Множество истинности конъюнкции предикатов есть пересечение множеств истинности предиката А(х) В(х). Если обозначить множество истинности предиката А(х) через ТА , а множество истинности предиката В(х) через ТВ и множество истинности предиката А(х) В(х) через , то

3. Дизъюнкцией предикатов А(х) и В(х), заданных на множестве Х, называется предикат А(х) В(х), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых хотя бы один из предикатов обратился в истинное высказывание.

Множество истинности дизъюнкции предикатов есть объединение множеств истинности образующих ее предикатов, т.е. .

4.Импликациейпредикатов А(х) и В(х), заданных на множестве Х, называется предикат А(х) В(х), который ложен при тех и только тех значениях переменной, при которых первый предикат обращается в истинное высказывание, а второй - в ложное.

Множество истинности импликации предикатов есть объединение множества истинности предиката В(х) с дополнением к множеству истинности предиката А(х), т.е.

5. Эквиваленциейпредикатов А(х) и В(х), заданных на множестве Х, называется предикат , который обращается в истинное высказывание при всех тех и только тех значениях переменной, при которых оба предиката обращаются либо в истинные высказывания, либо в ложные высказывания.

Множество истинности эквиваленции предикатов есть пересечение множества истинности предиката с множеством истинности предиката .

Кванторные операции над предикатами

Предикат можно перевести в высказывание способом подстановки и способом «навешивание квантора».

Про числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 можно сказать: а) все данные числа простые; б) некоторые из данных чисел четные.

Так как относительно этих предложений можно сказать, что они истинны или ложны, то полученные предложения - высказывания.

Если из предложения «а» убрать слово «все», а из предложения «б» - слово «некоторые», то получим следующие предикаты: «данные числа простые», «данные числа нечетные».

Слова «все» и «некоторые» называются кванторами. Слово «квантор» латинского происхождения и означает «сколько», т. е. квантор показывает, о скольких (всех или некоторых) объектах говорится в том или ином предложении.

Различают два основных вида кванторов: квантор общности и квантор существования.

Термины «всякий», «любой», «каждый» носят название - квантор всеобщности. Обозначается .

Пусть А(х) - определенный предикат, заданный на множестве Х. Под выражением А(х) будем понимать высказывание истинное, когда А(х) истинно для каждого элемента из множества Х, и ложное в противном случае.

Истинность высказываний с квантором общности устанавливается путем доказательства. Чтобы убедиться в ложности таких высказываний (опровергнуть их), достаточно привести контрпример.

17. Определение бинарного отношения между множествами А и В

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A.

Пример 1. Выпишите упорядоченные пары, принадлежащие бинарным отношениям R1 и R2, заданными на множествах Aи : , . Подмножество R1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R.

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R.

В примере 1 для R1 область определения: , множество значений - . Для R2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B, через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения

18. Способы задания бинарных отношений

Всякое подмножество декартова произведения AЧB называется бинарным отношением, определенным на паре множеств A и B (по латыни «бис» обозначает «дважды»). В общем случае по аналогии с бинарными можно рассматривать и n-арные отношения как упорядоченные последовательностиn элементов, взятых по одному из n множеств.

Для обозначения бинарного отношения применяют знак R. Поскольку R-- это подмножество множества AЧB, то можно записать R?AЧ. Если же требуется указать, что (a, b) ? R, т. е. между элементами a ? A и b ? B существует отношение R, то пишут aRb.

Способы задания бинарных отношений:

1. Это использование правила, согласно которому указываются все элементы, входящие в данное отношение. Вместо правила можно привести список элементов заданного отношения путем непосредственного их перечисления;

2. Табличный, в виде графов и с помощью сечений. Основу табличного способа составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, по второй -- другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

На (рисунке 1.16) изображена координатная сетка для множеств. Точкам пересечения трех вертикальных линий с шестью горизонтальными соответствуют элементы множества AЧB. Кружочками на сетке отмечены элементы отношения aRb, где a ? A и b ? B, R обозначает отношение «делит».

Бинарные отношения задаются двухмерными системами координат. Очевидно, что все элементы декартова произведения трех множеств аналогично могут быть представлены в трехмерной системе координат, четырех множеств-- в четырехмерной системе и т. д;

3. Способ задания отношений с помощью сечений используется реже, поэтому рассматривать его не будем.

19. Рефлексивность бинарного отношения. Пример

В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.

Свойство рефлексивности при заданных отношениях матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при заданных отношениях графом каждый элемент имеет петлю -- дугу (х, х).

Если это условие не выполнено ни для какого элемента множества , то отношение называется антирефлексивным.

Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли -- нет дуг вида (х, х).

Формально антирефлексивность отношения определяется как: .

Если условие рефлексивности выполнено не для всех элементов множества , говорят, что отношение нерефлексивно.

Примеры рефлексивных отношений

· отношения эквивалентности:

o отношение равенства

o отношение сравнимости по модулю

o отношение параллельности прямых и плоскостей[источник не указан 191 день]

o отношение подобия геометрических фигур;

· отношения нестрогого порядка:

o отношение нестрогого неравенства

o отношение нестрогого подмножества

o отношение делимости

Примеры антирефлексивных отношений

· отношение неравенства

· отношения строгого порядка:

o отношение строгого неравенства

o отношение строгого подмножества

· отношение перпендикулярности прямых (или ортогональности ненулевых векторов) в геометрии.

20. Симметричность бинарного отношения. Пример

Симметричность: для любых двух элементов а, b є М : аRb и bRа (т.е. R = R-1). Симметрична параллельность прямых, так как если a II b, то

b II a («быть равным»; «быть взаимнопростым»).

Симметричность. Отношение Q называется симметричным, если для любой пары <a, b>ОA2 при выполнении aQb выполняется и bQa. Например, на множестве людей симметричными являются отношения «быть родственником», «быть похожим».

21. Антисимметричные бинарные отношения. Пример

Aнтисимметричность: если для а ? b верно отношение аRb, то ложно bRа («быть больше», «не меньше», «быть делителем»).

R = {(x,y) : x є R, у є R, х-у ? 1} обладает свойствами антисимметрич-ности

22. Транзитивные бинарные отношения. Пример

Транзитивность: если аRb и bRс, то аRс для любых а, b, с є М («быть больше», «быть параллельным», «быть равным»).

R = {(x,y) : x є R, у є R, х-у ? 1}

23. Отношение эквивалентности. Пример

Бинарное отношение a на множестве X называется отношением эквивалентности на X, если a рефлексивно, симметрично и транзитивно.

Отношение эквивалентности часто обозначают символами ~,.

Примерами отношения эквивалентности служат:

· отношение тождества IX = {(a, a)|aX} на непустом множестве X;

· отношение параллельности на множестве прямых плоскости;

· отношение подобия на множестве фигур плоскости;

· отношение равносильности на множестве уравнений;

· отношение "иметь одинаковые остатки при делении на фиксированное натуральное число m" на множестве целых чисел. Это отношение в математике называют отношением сравнимости по модулю m и обозначают ab (mod m);

· отношение "принадлежать одному виду" на множестве животных;

· отношение "быть родственниками" на множестве людей;

· отношение "быть одного роста" на множестве людей;

· отношение "жить в одном доме" на множестве людей.

Отношения "жить на одной улице", "быть похожими" на множестве людей отношениями эквивалентности не являются, так как не обладают свойством транзитивности.

Из перечисленных выше свойств бинарных отношений следует, что пересечение отношений эквивалентности является отношением эквивалентности.

24. Понятие функции. Область определения и область значения функции

Переменная величина называется функцией переменной величины , если каждому значению (которое она может принимать) соответствует единственное значение . Переменная величина при этом называется независимой переменной или аргументом функции. Обозначения функции: , , , и т.п. Функцию и её аргумент можно обозначать и другими буквами.

Множество всех значений аргумента, при которых функция принимает определённые действительные значения, называется областью определения этой функции. Множество всех значений функции называется областью её значений.

Значение, которое функция принимает при , обозначается .

Корнем или нулём функции называется значение аргумента , при котором.

Если , - функции своих аргументов, причём область определения функции содержит область значений функции , то каждому из области определения функции соответствует единственное , такое что , где . Функция заданная подобным образом, обозначается и называется функцией от функции или сложной функцией.

25. Отношение частичного порядка. Пример

Определение 1. Бинарное отношение на множестве называется отношением частичного порядка1), если оно удовлетворяет свойствам

1. рефлексивности: для всех ;

2. антисимметричности: для всех ;

3. транзитивности: для всех .

Пример 1. Пусть -- множество всех подмножеств множества . Отношение включения на является отношением частичного порядка.

Пример 2. Упорядочение 2) на множестве действительных чисел является отношением частичного порядка.

Пример 3. На множестве комплексных чисел определим бинарное отношение как множество упорядоченных пар комплексных чисел таких, что и . Тогда удовлетворяет свойствам

· рефлексивности;

· антисимметричности;

· транзитивности,

и по определению является отношением частичного порядка.

Пример 4. Отношение делимости на множестве целых чисел 3) не является отношением частичного порядка, так как не обладает свойством антисимметричности: 2 делится на -2 и -2 делится на 2, но . Но то же самое отношение на множестве натуральных чисел является отношением частичного порядка.

26. Инъекция, сюръекция и биекция

Отображение называется инъекцией , если для любых элементов x1, x2 О X , для которых f(x1) = f(x2) следует, что x1 = x2 . (рис. 7)

Сюръекцией (или отображением "на" ) называется отображение, при котором f(X) = Y (рис. 8).

Биекция - это одновременно и сюръекция и инъекция (рис.9).

27. Испытания и исход

Испытанием в теории вероятностей называют какой-нибудь эксперимент (не обязательно научный). Например, подбросили монетку -- испытание. Вытянули лотерейный билет -- испытание. Провели жеребьёвку спортивного соревнования -- тоже испытание. Вообще говоря, эксперимент должен быть повторяемым. То есть, чтобы мы могли говорить о вероятности, у нас должна быть возможность провести эксперимент не один (а если совсем строго, то сколько угодно) раз.

Если есть эксперимент, есть и возможные результаты -- то, чем он может закончиться. Список возможных результатов можно составлять по-разному, но стандартный способ -- выбрать максимальное дробление результатов. Например, при бросании кубика можно сказать, что есть два результата: {выпало 6} и {выпало не 6}, -- но это не очень удобно, так как второй результат можно раздробить на более мелкие. Составляя список возможных результатов, мы должны также помнить, что два результата никогда не могут случиться одновременно (условие взаимоисключения).

Испытанием называется эксперимент с очерченным набором возможных взаимоисключающих результатов. Эти результаты называются исходами.

28. Частота появления события

Определение 1.Если проведена серия из опытов, в каждом из которых могло появиться или не появиться некоторое событие , то частотой события (статистической вероятностью события ) в данной серии опытов называется отношение числа опытов, в которых появилось событие , к общему числу произведённых опытов:

. (3.1)

Замечание 1. При небольшом числе опытов частота события носит в значительной мере случайный характер и может заметно меняться от одной группы опытов к другой. Однако при увеличении числа опытов частота стабилизируется, приближаясь с незначительными колебаниями к некоторой средней, постоянной величине. Это свойство устойчивости частот, многократно проверенное на опытах, есть одна из наиболее характерных закономерностей, наблюдаемых в случайных явлениях. Проверить этот факт на практике можно только для событий, сводящихся к схеме случаев, так как только для этих событий существует точный способ вычисления математической вероятности. Многочисленные опыты этот факт действительно подтверждают.

Пример (опыт Бюффона и Пирсона). Бросание симметричной монеты.

Число бросаний

Число выпадений герба

Частота выпадений герба

0,5080

0,5016

0,5005

Вполне естественно допустить, что и для событий, не сводящихся к схеме случаев, тот же закон остаётся в силе и что постоянное значение, к которому при увеличении числа опытов приближается частота наступления события, представляет собой вероятность события. Тогда частоту события при достаточно большом числе опытов можно принять за приближенное значение вероятности

Математическую формулировку и доказательство этого факта представил Я. Бернулли. Он доказал, что при неограниченном увеличении числа однородных независимых опытов с практической достоверностью можно утверждать, что частота события будет сколь угодно мало отличаться от его вероятности в отдельном опыте.

Замечание 2. Характер приближения частоты к вероятности при увеличении числа опытов отличается от стремления к пределу в математическом смысле.

В математическом анализе означает, что разность становится меньше любого положительного числа для всех значений , начиная с некоторого достаточно большого числа.

При экспериментальном определении вероятности через частоту события нет ничего физически невозможного в том, что при большом числе опытов частота события будет значительно уклоняться от его вероятности; но такое значительное уклонение является весьма маловероятным;тем менее вероятным, чем большее число опытов произведено. Пример: монета. Таким образом, при возрастании числа опытов частота приближается к вероятности, но не с полной достоверностью, а с большой вероятностью, которая при большом числе опытов может рассматриваться как практическая достоверность.

29. Статистическое определение вероятности

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

- относительная частота появления события А;

- число испытаний, в которых появилось событие А;

- общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример: Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

· Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

· События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

· Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

30. Случайная величина. Вероятность, математическое ожидание, дисперсия, среднеквадратичное отклонение

Дискретной называют случайную величину, значения которой изменяются не плавно, а скачками, т.е. могут принимать только некоторые заранее определённые значения. Например, денежный выигрыш в какой-нибудь лотерее, или количество очков при бросании игральной кости, или число появления события при нескольких испытаниях. Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счётным множеством)

Для сравнения - непрерывная случайная величина может принимать любые значения из некоторого числового промежутка: например, температура воздуха в определённый день, вес ребёнка в каком-либо возрасте, и т.д.

Закон распределения дискретной случайной величины представляет собой перечень всех её возможных значений и соответствующих вероятностей. Сумма всех вероятностей Уpi = 1. Закон распределения также может быть задан аналитически (формулой) и графически (многоугольником распределения, соединяющим точки (xi; pi)

Функция распределения случайной величины - это вероятность того, что случайная величина (назовём её о) примет значение меньшее, чем конкретное числовое значение x: F(X) = P(о < X).

Для дискретной случайной величины функция распределения вычисляется для каждого значения как сумма вероятностей, соответствующих всем предшествующим значениям случайной величины. Ниже будет приведён пример, разъясняющий смысл сказанного.

Математическое ожидание дискретной случайной величины есть сумма произведений всех её возможных значений на их вероятности:

M(X) = x1p1 + x2p2 + ... + xnpn

Свойства математического ожидания.

1) Математическое ожидание постоянной величины равно самой величине:

М(С) = С

2) Постоянный множитель можно выносить за знак математического ожидания:

М(СХ) = С·М(Х)

3) Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

М(Х1 + Х2 + …+ Хn) = М(Х1) + М(Х2) + ... + М(Хn)

4) Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий сомножителей:

М(Х1 · Х2 · ... · Хn) = М(Х1) · М(Х2) · ... · М(Хn)

Дисперсия дискретной случайной величины есть математическое ожидание квадрата отклонения случайной величины от её математического ожидания:

...

Подобные документы

  • Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Над множествами определяют операции, во многом сходные с арифметическими. Операции над множествами интерпретируют геометрически с помощью диаграмм Эйлера-Венна.

    реферат [15,8 K], добавлен 03.02.2009

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.

    реферат [70,9 K], добавлен 11.03.2009

  • Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.

    презентация [1,2 M], добавлен 12.12.2012

  • Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.

    контрольная работа [369,0 K], добавлен 03.09.2010

  • Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.

    презентация [564,8 K], добавлен 23.12.2013

  • Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.

    контрольная работа [163,2 K], добавлен 08.11.2009

  • Нечёткие системы логического вывода. Исследование основных понятий теории нечетких множеств. Операции над нечёткими множествами. Нечёткие соответствия и отношения. Описания особенностей логических операций: конъюнкции, дизъюнкции, отрицания и импликации.

    презентация [191,0 K], добавлен 29.10.2013

  • Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.

    контрольная работа [463,0 K], добавлен 17.05.2015

  • Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.

    лекция [540,0 K], добавлен 25.03.2012

  • Изобретение Леонардом Эйлером геометрической схемы, с помощью которой можно изобразить отношения между подмножествами. Изучение частного случая кругов Эйлера — диаграммы Эйлера—Венна, изображающей все 2^n комбинаций n свойств (конечную булеву алгебру).

    презентация [595,0 K], добавлен 16.02.2015

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

  • Проверка справедливости тождеств или включений с использованием алгебры множеств и диаграмм Эйлера-Венна. Изображение графа и матрицы отношения, обладающего свойствами рефлексивности, транзитивности и антисиммеричности. Изучение неориентированного графа.

    контрольная работа [1,3 M], добавлен 05.05.2013

  • Алгоритм построения многочлена Жегалкина по совершенной дизъюнктивной нормальной форме. Диаграмма Эйлера-Венна, изображение универсального множества и подмножества. Проверка самодвойственности, монотонности и линейности логической функции двух переменных.

    контрольная работа [227,5 K], добавлен 20.04.2015

  • Свойства операций над множествами. Формулы алгебры высказываний. Функции алгебры логики. Существенные и фиктивные переменные. Проверка правильности рассуждений. Алгебра высказываний и релейно-контактные схемы. Способы задания графа. Матрицы для графов.

    учебное пособие [1,5 M], добавлен 27.10.2013

  • Сущность теории множеств и особенности ее практического применения. Операции над множествами и их главные закономерности. Порядок нахождения области определения функции, участков ее возрастания и убывания. Определение вероятности исследуемого действия.

    контрольная работа [46,5 K], добавлен 02.12.2011

  • Определение понятия множества как совокупности некоторых объектов, объединенных по какому-либо признаку. Классификация операций над множествами. Принципы взаимно однозначного соответствия. Нахождение наибольшего общего делителя и наименьшего кратного.

    презентация [249,6 K], добавлен 24.09.2011

  • Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.

    курсовая работа [64,0 K], добавлен 04.06.2015

  • Градусная и радианная мера угла. Функция как соотношение между двумя числовыми множествами, размерность числового множества. Понятие множества значений некоторого угла. Элементарные тригонометрические функции произвольного угла: синус, косинус, тангенс.

    реферат [239,9 K], добавлен 19.08.2009

  • История возникновения булевой алгебры, разработка системы исчисления высказываний. Методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Дизъюнкция, конъюнкция и отрицание, таблицы истинности.

    презентация [1,9 M], добавлен 22.02.2014

  • Понятие метрического и топологического пространства. Расстояние между множествами. Диаметр множества. Непрерывные отображения. Гомеоморфизм. Вектор-функция скалярного аргумента. Понятия пути и кривой. Гладкая и регулярная кривая, замена параметра.

    курс лекций [134,0 K], добавлен 02.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.