Принцип Лагранжа исследования экстремальных задач
Рассмотрение сущности принципа Лагранжа. Описание его применения для решения экстремальных задач без ограничений, конечномерных задач с ограничениями типа равенств, задач с ограничениями типа неравенств и равенств, задач выпуклого программирования.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 06.09.2017 |
Размер файла | 63,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Теория задач на отыскание наибольших и наименьших величин. Достаточные условия экстремума. Решение гладкой конечномерной задачи с ограничениями типа равенств и неравенств. Конечномерная теорема об обратной функции. Доказательство теоремы Вейштрасса.
курсовая работа [148,9 K], добавлен 19.06.2012Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.
диссертация [2,8 M], добавлен 19.06.2015Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат [726,8 K], добавлен 14.03.2013Методы решения задач с экономическим содержанием повышенного уровня сложности. Выявление структуры экономических задач на проценты. Вывод формул для решения задач на равные размеры выплат. Решение задач на сокращение остатка на одну долю от целого.
курсовая работа [488,3 K], добавлен 22.05.2022Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.
курсовая работа [2,2 M], добавлен 11.12.2011Рассмотрение видов арифметических задач, используемых в работе с дошкольниками. Этапы обучения решению арифметических задач. Изучение структуры, модели записи математического действия. Алгоритм решения задач. Роль данных занятий в общем развитии ребенка.
презентация [379,7 K], добавлен 19.06.2015Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.
практическая работа [1,5 M], добавлен 15.12.2013Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа [1,8 M], добавлен 27.11.2012Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.
реферат [933,5 K], добавлен 10.08.2014Анализ особенностей методической деятельности учителя начальных классов при обучении учащихся решению задач с пропорциональной зависимостью. Роль задач в формировании учебной деятельности младших школьников. Виды задач в начальном курсе математики.
курсовая работа [36,0 K], добавлен 07.01.2015Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".
дипломная работа [461,7 K], добавлен 08.08.2007Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.
курсовая работа [1,2 M], добавлен 16.01.2013Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.
курсовая работа [622,2 K], добавлен 15.06.2010Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация [247,7 K], добавлен 20.02.2015Проектирование методов математического моделирования и оптимизации проектных решений. Использование кусочной интерполяции при решении задач строительства автомобильных дорог. Методы линейного программирования. Решение специальных транспортных задач.
методичка [690,6 K], добавлен 26.01.2015Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.
методичка [303,7 K], добавлен 14.03.2011Выполнение алгебраических преобразований, логическая культура и техника исследования. Основные типы задач с параметрами, нахождение количества решений в зависимости от значения параметра. Основные методы решения задач, методы построения графиков функций.
методичка [88,2 K], добавлен 19.04.2010Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.
реферат [162,8 K], добавлен 20.05.2019Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.
курсовая работа [638,6 K], добавлен 14.02.2010Параллельные методы умножения матрицы на вектор. Принципы распараллеливания. Способы разбиения матриц ленточного типа по строкам. Распределение задач по процессорам. Анализ эффективности. Программная реализация (MPI) – порядок по логике вызовов.
презентация [607,0 K], добавлен 10.02.2014