Алгебра логики

Понятия алгебры логики: конъюнкция, дизъюнкция, инверсия, импликация, эквивалентность. Двоичные операции с цифровыми сигналами. Классификация электронных транзисторных физических реализаций логических элементов. Комбинационные логические устройства.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 15.09.2017
Размер файла 109,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ФГБОУ ВПО «Кубанский государственный аграрный университет»

Кафедра компьютерных технологий и систем

Курсовая работа

Краснодар

2013

Содержание

Введение

1. Основные понятия алгебры логики

1.1 Конъюнкция

1.2 Дизъюнкция

1.3 Инверсия

1.4 Импликация и эквивалентность

2. Формализация высказываний

3. Логические элементы

3.1 Двоичные логические операции с цифровыми сигналами (битовые операции)

3.2 Физические реализации

3.3 Классификация электронных транзисторных физических реализаций логических элементов

3.4 Инвертор

3.5 Комбинационные логические устройства

3.6 Последовательностные цифровые устройства

Заключение

Список использованной литературы

Введение

Тема курсовой работы: «Логические основы ЭВМ».

Алгебра логики (булева алгебра) - это раздел математики, возникший в XIX веке благодаря усилиям английского математика Джорджа Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор и т. д.). Хотя это не единственная сфера применения данной науки.

Цель данной курсовой работы состоит в изучении применении алгебры логики в ЭВМ.

Для достижения цели необходимо ответить на следующие вопросы:

основные понятия алгебры логики;

формализация высказываний;

логические элементы;

1. Основные понятия алгебры логики

Алгебра логики возникла в середине ХIХ века в трудах английского математика Джорджа Буля. Её создание представляло собой попытку решать традиционные логические задачи алгебраическими методами.

Отцом алгебры логики по праву считается английский математик 19-го столетия Джордж Буль (1815-1864). Именно он построил один из разделов формальной логики в виде некоторой «алгебры», аналогичной алгебре чисел, но не сводящейся к ней. Алгебра в широком смысле слова - наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться не только с числами, но и над другими математическими объектами. Существуют алгебры натуральных чисел, многочленов, векторов, матриц, множеств и т.д.

Большой вклад в становление и развитие алгебры логики внесли Августус де Морган (1806-1871), Уильям Стенли Джевонс (1835-1882), П.С. Порецкий(1846-1907), Чарлз Сандерс Пирс (1839-1914), А.А. Марков (1903-1979), А.Н. Колмогоров (1903-1987) и др.

Долгое время алгебра логики была известна достаточно узкому классу специалистов. Прошло почти 100 лет со времени создания алгебры логики Дж. Булем, прежде чем в 1938 Клод Шеннон (1916-2001) показал, что алгебра логики применима для описания самых разнообразных процессов, в том числе функционирования релейно-контактных и электронно-ламповых схем. [1, c. 14]

Алгебра логики явилась математической основой теории электрических и электронных переключателей схем, используемых в ЭВМ. В компьютерных науках её предпочитают называть не алгеброй логики, а Булевой алгеброй - по имени её создателя.

Алгебра логики изучает свойства функций, у которых и аргументы, и значения принадлежат заданному двухэлементному множеству (например, {0,1}). Иногда вместо термина «алгебра логики» употребляют термин «двузначная логика».

Алгебра логики - предельно важная для цифровых компьютеров тема. И с точки зрения их устройства, схем техники, и с точки зрения их функционирования и программирования поведения.

Действительно, мало-мальски сложное действие невозможно без обратной связи, без анализа условий выполнения. Например, «ЕСЛИ нам хочется пить, ТО мы пьём, ИНАЧЕ мы даже не думаем об этом». «ЕСЛИ компьютер не работает И питание включено, ТО компьютер сгорел». «ЕСЛИ точка левее левой стороны квадрата ИЛИ правее правой, ТО точка расположена не в квадрате». «Ревёт ли зверь в лесу глухом, трубит ли рог, гремит ли гром...». «Кошелёк или жизнь». Помимо манипуляций константами «да» и «нет» логические переменные могут являться результатом применения к числам операторов отношения (меньше, больше, равно и т.п.). В компьютерах булевы переменные представляются (кодируются) битами (разрядами двоичной системы счисления), где 1 означает истину, а 0 - ложь. Манипуляции высказываниями и их комбинациями используются для получения некоего единственного результата, который можно использовать, например, для выбора той или иной последовательности действий. Поскольку логические переменные кодируются по тем же принципам, что и числа, символы и прочая информация, то можно комбинировать операции логики с операциями арифметики для реализации различных алгоритмов.

Таким образом, алгебра логики (другое название - Булева алгебра) - это область математики. Она оперирует величинами, которые могут принимать два значения (булевых значения). Эти два значения могут быть обозначены как угодно, лишь бы по-разному. Самые распространенные варианты:

0, 1;

F, T;

false, true;

ложь, истина;

Л, И;

При применении булевой алгебры в вычислительной технике, булевы значения - это 0 и 1. Они представляют собой состояние ячейки памяти объёмом в 1бит или наличие/отсутствие напряжения в электрической схеме. Алгебра логики позволяет строить сложные электронные узлы, элементы которых работают согласно этой математической теории. При применении булевой алгебры в логических построениях в математике, булевы значения - это «ложь» и «истина». Они определяют истинность или ложность некоторого высказывания. Под высказываниями понимаются математические формулы. При применении булевой алгебры в повседневных рассуждениях, булевы значения - это также «ложь» и «истина». Они представляют собой оценку истинности или ложности некоторого высказывания. Под высказываниями понимаются фразы, которые удовлетворяют строго определенному списку свойств.

Алгебра логики применяется: 1) для упрощения сложных логических формул и доказательств тождеств; 2) при решении логических задач; 3) в контактных схемах; 4) при доказательствах теорем; 5) в базах данных при составлении запросов.[2, c. 79]

Объектом логики как науки выступает абстрактное мышление. Логика изучает абстрактное мышление как средство познания объективного мира, исследует формы и законы, в которых происходит отражение мира в процессе мышления. Основными формами абстрактного мышления являются:

понятия;

суждения;

умозаключение;

Понятие -- форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов: портфель, трапеция, ураганный ветер или группой слов, т.е. словосочетаниями, например: "студент гуманитарного института", "создатель художественных картин", "река Дон", "космический корабль" и др.

Суждение -- мысль, в которой что-либо утверждается или отрицается о предметах. Суждения являются повествовательными предложениями, истинными или ложными. Они могут быть простыми и сложными: Весна наступила, и грачи прилетели.

Пример сложного суждения: "Наступила осень, и лебеди улетают". Оно состоит из двух простых суждений.

Умозаключение -- прием мышления, посредством которого из исходного знания получается новое знание; из одного или нескольких истинных суждений, называемых посылками, мы по определённым правилам вывода получаем заключение. Есть несколько видов умозаключений. Все металлы -- простые вещества. Литий -- металл. Литий -- простое вещество.

Все металлы - вещества. Железо - металл. Железо - вещество.

Чтобы достичь истины при помощи умозаключений, надо соблюдать законы логики.

Формальная логика -- наука о законах и формах правильного мышления.

Математическая логика изучает логические связи и отношения, лежащие в основе дедуктивного (логического) вывода.

Логика высказываний послужила основным математическим инструментом при создании компьютеров. Она легко преобразуется в итовую логику: истинность высказывания обозначается одним битом (0 - ЛОЖЬ, 1 - ИСТИНА); тогда операция ¬ приобретает смысл вычитания из единицы; ? - немодульного сложения; & (или ?) - умножения; - - равенства; ? - в буквальном смысле сложения по модулю 2 (исключающее Или - XOR); ? - не превосходства суммы над 1 (то есть A?B = (A + B) <= 1). [

Впоследствии булева алгебра была обобщена от логики высказываний путём введения характерных для логики высказываний аксиом. Это позволило рассматривать, например, логику кубитов, тройственную логику (когда есть три варианта истинности высказывания: «истина», «ложь» и «не определено») и др.[4, c. 94]

Логическое выражение - это символическая запись, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками). В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно. Обозначаются логические переменные буквами латинского алфавита. Существуют разные варианты обозначения истинности и ложности переменных:

Таблица 1

ИСТИНА

1

TRUE

T

ЛОЖЬ

0

FALSE

F

Связки «НЕ», «И», «ИЛИ» заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение.

Как уже упоминалось, алгебра логики - раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. Логическое высказывание - любое повествовательное предложение, в отношение которого можно однозначно сказать, истинно оно или ложно.

В алгебре высказываний любую логическую функцию можно выразить через основные логические операции, записать ее в виде логического выражения и упростить ее, применяя законы логики и свойства логических операций. По формуле логической функции легко рассчитать ее таблицу истинности. Необходимо только учитывать порядок выполнения логических операций (приоритет) и скобки. Операции в логическом выражении выполняются слева направо с учетом скобок.

Приоритет логических операций:

инверсия;

конъюнкция;

дизъюнкция;

1.1 Конъюнкция

Конъюнкция: соответствует союзу: «и», обозначается знаком^, обозначает логическое умножение.

Конъюнкция двух логических ~ истинна тогда и только тогда , когда оба высказываний истинны. Можно обобщить для любого количества переменных А^В^С = 1 если А=1, В=1, С=1.[5, c. 67]

Таблица 2. Таблица истинности для операции «Конъюнкция»

A

B

A ^ B

0

0

0

0

1

0

1

0

0

1

1

1

1.2 Дизъюнкция

Логическая операция соответствует союзу ИЛИ, обозначается знаком v, иначе называется ЛОГИЧЕСКОЕ СЛОЖЕНИЕ.

Дизъюнкция двух логических переменных ложна тогда и галька тогда, когда оба высказывания ложны.

Это определение можно обобщить для любого количества логических переменных, объединенных дизъюнкцией.

A v В v С = 0, только если А = О, В = О, С - 0.

Таблица 3. Таблица истинности для операции «Дизъюнкция»

A

B

A v B

0

0

0

0

1

1

1

0

1

1

1

1

1.3 Инверсия

Логическая операция соответствует частице не, обозначается ¬ или Ї и является логическим отрицанием.

Инверсия логической переменной истинна, если переменная ложна и наоборот: инверсия ложна, если переменная истинна. [5, c. 71]

Таблица 4. Таблица истинности для операции «Инверсия»

A

¬A

0

1

1

0

Высказывания у которых таблицы истинности совпадают называются равносильными.

1.4 Импликация и эквивалентность

Импликация «если А, то В», обозначается А > В

Таблица 5. Таблица истинности для операции «Импликация»

A

B

А > В

0

0

1

0

1

0

1

0

1

1

1

1

Таблица 6. Эквивалентность «А тогда В и только тогда», обозначается А ~ В

A

B

A ~ B

0

0

1

0

1

0

1

0

0

1

1

1

При вычислении значения логического выражения (формулы) логические операции вычисляются в определенном порядке, согласно их приоритету:

инверсия;

конъюнкция;

дизъюнкция;

импликация и эквивалентность;

Операции одного приоритета выполняются слева направо. Для изменения порядка действий используются скобки. [5, c. 84]

2. Формализация высказываний

Естественные языки используются для создания описательных информационных моделей. В истории науки известны многочисленные описательные информационные модели; например, гелиоцентрическая модель мира, которую предложил Коперник, формулировалась следующим образом:

Земля вращается вокруг своей оси и вокруг Солнца;

орбиты всех планет проходят вокруг Солнца;

С помощью формальных языков строятся формальные информационные модели (математические, логические и др.). Одним из наиболее широко используемых формальных языков является математика. Модели, построенные с использованием математических понятий и формул, называются математическими моделями. Язык математики является совокупностью формальных языков.

Язык алгебры позволяет формализовать функциональные зависимости между величинами. Так, Ньютон формализовал гелиоцентрическую систему мира, открыв законы механики и закон всемирного тяготения и записав их в виде алгебраических функциональных зависимостей. Например, в школьном курсе физики рассматривается много разнообразных функциональных зависимостей, выраженных на языке алгебры, которые представляют собой математические модели изучаемых явлений или процессов.

Язык алгебры логики (алгебры высказываний) позволяет строить формальные логические модели. С помощью алгебры высказываний можно формализовать (записать в виде логических выражений) простые и сложные высказывания, выраженные на естественном языке. Построение логических моделей позволяет решать логические задачи, строить логические модели устройств компьютера (сумматора, триггера) и так далее. [1, c. 152]

Процесс построения информационных моделей с помощью формальных языков называется формализацией.

В процессе познания окружающего мира человечество постоянно использует моделирование и формализацию. При изучении нового объекта сначала обычно строится его описательная информационная модель на естественном языке, затем она формализуется, то есть выражается с использованием формальных языков (математики, логики и др.).

3. Логические элементы

Логические элементы -- устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого -- «1» и низкого -- «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательности «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.

С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже -- на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).

Всего возможно логических функций и соответствующих им логических элементов, где -- основание системы счисления, -- число входов (аргументов), -- число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы. [9, c. 142]

Всего возможны двоичных двухвходовых логических элементов и двоичных трёхвходовых логических элементов (Булева функция).

Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19683 двухвходовых троичных логических элементов и 7625597484987 трёхвходовых троичных логических элементов (троичные функции).

Логические элементы входят в состав микросхем, например ТТЛ элементы -- в состав микросхем К155 (SN74), К133; ТТЛШ -- 530, 533, К555, ЭСЛ -- 100, К500 и т. д.

3.1 Двоичные логические операции с цифровыми сигналами (битовые операции)

Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.

Логические операции с одним операндом называются унарными, с двумя -- бинарными, с тремя -- тернарными (триарными, тринарными) и т. д.

Из возможных унарных операций с унарным выходом интерес для реализации представляют операции отрицания и повторения, причём, операция отрицания имеет большую значимость, чем операция повторения, так как повторитель может быть собран из двух инверторов, а инвертор из повторителей не собрать.

Рисунок 1. Инвертор, НЕ

Мнемоническое правило для отрицания звучит так: На выходе будет:

«1» тогда и только тогда, когда на входе «0»;

«0» тогда и только тогда, когда на входе «1»;

Рисунок 2. Повторитель (буфер)

Преобразование информации требует выполнения операций с группами знаков, простейшей из которых является группа из двух знаков. Оперирование с большими группами всегда можно разбить на последовательные операции с двумя знаками.

Из возможных бинарных логических операций с двумя знаками c унарным выходом интерес для реализации представляют операций, приведённых ниже:

Рисунок 3. Конъюнкция (логическое умножение). Операция И

Логический элемент, реализующий функцию конъюнкции, называется схемой совпадения. [9, c. 157]

Мнемоническое правило для конъюнкции с любым количеством входов звучит так: На выходе будет:

«1» тогда и только тогда, когда на всех входах действуют «1»;

«0» тогда и только тогда, когда хотя бы на одном входе действует «0»;

Словесно эту операцию можно выразить следующим выражением: "Истина на выходе может быть при истине на входе 1 И истине на входе 2".

Рисунок 4. Дизъюнкция (логическое сложение). Операция ИЛИ

Мнемоническое правило для дизъюнкции с любым количеством входов звучит так: На выходе будет:

«1» тогда и только тогда, когда хотя бы на одном входе действует «1»;

«0» тогда и только тогда, когда на всех входах действуют «0»;

Рисунок 5. Инверсия функции конъюнкции. Операция И-НЕ (штрих Шеффера)

Мнемоническое правило для И-НЕ с любым количеством входов звучит так: На выходе будет:

«1» тогда и только тогда, когда хотя бы на одном входе действует «0»;

«0» тогда и только тогда, когда на всех входах действуют «1»;

Рисунок 6. Инверсия функции дизъюнкции. Операция ИЛИ-НЕ (стрелка Пирса)

Мнемоническое правило для ИЛИ-НЕ с любым количеством входов звучит так: На выходе будет:

«1» тогда и только тогда, когда на всех входах действуют «0»;

«0» тогда и только тогда, когда хотя бы на одном входе действует «1»;

Рисунок 7. Эквивалентность (равнозначность), ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ

Мнемоническое правило эквивалентности с любым количеством входов звучит так: На выходе будет:

«1» тогда и только тогда, когда на входе действует четное количество;

«0» тогда и только тогда, когда на входе действует нечетное количество;

Словесная запись: "истина на выходе при истине на входе 1 и входе 2 или при лжи на входе 1 и входе 2".

Рисунок 8. Сложение (сумма) по модулю 2 (Исключающее ИЛИ, неравнозначность)

Мнемоническое правило для суммы по модулю 2 с любым количеством входов звучит так: На выходе будет:

«1» тогда и только тогда, когда на входе действует нечётное количество;

«0» тогда и только тогда, когда на входе действует чётное количество;

Словесное описание: "истина на выходе - только при истине на входе1, либо только при истине на входе 2"[9, c. 164]

Этими простейшими логическими операциями (функциями), и даже некоторыми их подмножествами, можно выразить любые другие логические операции. Такой набор простейших функций называется функционально полным логическим базисом. Таких базисов 4:

И, НЕ (2 элемента);

ИЛИ, НЕ (2 элемента);

И-НЕ (1 элемент);

ИЛИ-НЕ (1 элемент);

Для преобразования логических функций в один из названых базисов необходимо применять Закон (правило) де-Моргана.

3.2 Физические реализации

Реализация логических элементов возможна при помощи устройств, использующих самые разнообразные физические принципы:

механические;

гидравлические;

пневматические;

электромагнитные;

электромеханические;

электронные;

Физические реализации одной и той же логической функции, а также обозначения для истины и лжи, в разных системах электронных и неэлектронных элементов отличаются друг от друга.

3.3 Классификация электронных транзисторных физических реализаций логических элементов

Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

РТЛ (резисторно-транзисторная логика);

ДТЛ (диодно-транзисторная логика);

ТТЛ (транзисторно-транзисторная логика);

Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используются в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включенным в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включенным по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

ТТЛШ (то же с диодами Шоттки);

Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).

КМОП (логика на основе комплементарных ключей на МОП транзисторах);

ЭСЛ (эмиттерно-связанная логика);

Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160--200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц. [9, c. 179]

3.4 Инвертор

Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).

3.5 Комбинационные логические устройства

Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами:

сумматор;

полусумматор;

шифратор;

дешифратор;

мультиплексор;

демультиплексор;

компаратор цифровой;

Все они выполняют простейшие двоичные, троичные или n-ичные логические функции. [9, c. 314]

3.6 Последовательностные цифровые устройства

Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

триггер;

счётчик импульсов;

регистр;

венъюнктор;

секвентор;

Заключение

Итак, алгебра высказываний является составной частью одного из современных быстро развивающихся разделов математики -- математической логики. Математическая логика применяется в информатике, позволяет моделировать простейшие мыслительные процессы.

Логика возникла задолго до появления компьютеров и возникла она в результате необходимости в строгом формальном языке. Были построены функции - удобное средство для построения сложных утверждений и проверки их истинности. Оказалось, что такие функции обладают аналогичными свойствами с алгебраическими операторами. Это дало возможность упрощать исходные выражения. Особое свойство логических выражений - возможность их нахождения по значениям. Это получило широкое распространение в цифровой электронике, где используются логические элементы, и программировании.

Таким образом, алгебра логики широко применима и играет важнейшую роль в вычислительной технике. Различные действия над высказываниями, вентили, сумматоры, мультиплексоры и т. д. - все это основы вычислительного устройства и без них обойтись нельзя.

Список использованной литературы

алгебра логика двоичный конъюнкция

1. Александр Константинович Гуц, «Математическая логика и теория алгоритмов», ISBN 978-5-823-90126-0; 2003 г.

2. Андрей Колмогоров, Альберт Драгалин, «Математическая логика. Дополнительные главы», ISBN 978-5-354-01448-4; 2013 г.

3. Владимиров Д.А. Булевы алгебры. -- М.: «Наука», 1969. -- 320 с.

4. Гильберт Д. и Аккерман Б., «Основы теоретической логики», пер. с нем., М., 1947.

5. Гуров С.И. «Булевы алгебры, упорядоченные множества, решетки: Определения, свойства, примеры» -- М.: Либроком, 2013. -- 352 с. -- ISBN 978-5-397-03899-7.

6. Джеймс Калбертсон, «Математика и логика цифровых устройств», 1965 г.

7. Иванов Б.Н. «Дискретная математика. Алгоритмы и программы. Расширенный курс.» -- М.: «Известия», 2011. -- 512 с. -- ISBN 978-5-206-00824-1.

8. Клини С. К., «Введение в метаматематику», пер. с англ., М., 1957.

9. Кузнецов О.П., Адельсон-Вельский Г.М. «Дискретная математика для инженера» -- М.: Энергоатомиздат, 1988. -- 480 с.

10. Новиков П.С., «Элементы математической логики», М., 1959.

11. Новиков Ю.В. «Введение в цифровую схемотехнику. Курс лекций» -- М.: Интернет-университет информационных технологий, 2006. -- ISBN 5-94774-600-Х.

12. Рейбен Луис Гудстейн, «Математическая логика», ISBN 978-5-397-00528-9; 2010 г.

13. Сергей Гуров, «Булевы алгебры, упорядоченные множества, решетки. Определения, свойства, примеры», ISBN 978-5-396-00456-6; 2013 г.

14. Тарский А., «Введение в логику и методологию дедуктивных наук», пер. с англ., М., 1948.

15. Юрий Шиханович, «Логические и математические исчисления», ISBN 978-5-91522-246-4; 2011 г.

Размещено на Allbest.ru

...

Подобные документы

  • Логическая переменная в алгебре логики. Логические операции: отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность. Основные законы алгебры логики. Правила минимизации логической функции (избавление от операций импликации и эквивалентности).

    курсовая работа [857,2 K], добавлен 16.01.2012

  • Системы цифровой обработки информации. Понятие алгебры Буля. Обозначения логических операций: дизъюнкция, конъюнкция, инверсия, импликация, эквивалентность. Законы и тождества алгебры Буля. Логические основы ЭВМ. Преобразование структурных формул.

    презентация [554,8 K], добавлен 11.10.2014

  • Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.

    реферат [63,3 K], добавлен 06.12.2010

  • Логические константа и переменная. Последовательность выполнения логических операций в логических формулах. Логическая информация и основы логики. Общие, частные и единичные высказывания. Старшинство логических операций. Импликация и эквивалентность.

    курсовая работа [1,0 M], добавлен 27.04.2013

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация [67,8 K], добавлен 23.12.2012

  • Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.

    контрольная работа [83,3 K], добавлен 26.04.2011

  • История возникновения булевой алгебры, разработка системы исчисления высказываний. Методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Дизъюнкция, конъюнкция и отрицание, таблицы истинности.

    презентация [1,9 M], добавлен 22.02.2014

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

  • Элементы алгебры, логические операции над высказываниями. Получение логических следствий из данных формул и посылок для данных логических следствий. Необходимые и достаточные условия. Анализ и синтез релейно-контактных схем. Логические следствия и формы.

    дипломная работа [295,2 K], добавлен 11.12.2010

  • Основные понятия алгебры логики. Дизъюнктивные и конъюнктивные нормальные формы. Сущность теоремы Шеннона. Булевы функции двух переменных. Последовательное и параллельное соединение двух выключателей. Свойства элементарных функций алгебры логики.

    контрольная работа [345,3 K], добавлен 29.11.2010

  • Алгебра логики, булева алгебра. Алгебра Жегалкина, педикаты и логические операции над ними. Термины и понятия формальных теорий, теорема о дедукции, автоматическое доказательство теорем. Элементы теории алгоритмов, алгоритмически неразрешимые задачи.

    курс лекций [652,4 K], добавлен 29.11.2009

  • Булевы алгебры – решетки особого типа, применяемые при исследовании логики (как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Минимальные формы булевых многочленов. Теоремы абстрактной булевой алгебры.

    курсовая работа [64,7 K], добавлен 12.05.2009

  • Степень истинности или ложности высказывания. Операции над нечеткими высказываниями. Отрицание, конъюнкция, дизъюнкция, импликация и эквивалентность высказываний. Типы лингвистических высказываний. Множество нечетких продукций и входных переменных.

    лекция [23,6 K], добавлен 15.10.2013

  • Основные формы мышления: понятия, суждения, умозаключения. Сочинение Джорджа Буля, в котором подробно исследовалась логическая алгебра. Значение истинности (т.е. истинность или ложность) высказывания. Логические операции инверсии (отрицания) и конъюнкции.

    презентация [399,6 K], добавлен 14.12.2016

  • Основная функционально полная система логических функций. Законы алгебры логики в основной функционально полной системе и их следствия. Переместительный и распределительный законы. Закон инверсии (правило Де Моргана). Системы логических функций.

    реферат [40,5 K], добавлен 17.11.2008

  • Свойства операций над множествами. Формулы алгебры высказываний. Функции алгебры логики. Существенные и фиктивные переменные. Проверка правильности рассуждений. Алгебра высказываний и релейно-контактные схемы. Способы задания графа. Матрицы для графов.

    учебное пособие [1,5 M], добавлен 27.10.2013

  • Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.

    контрольная работа [178,2 K], добавлен 20.01.2011

  • Операции логики с понятием "суд". Объединённая классификация суждений, их логические обозначения. Составные части сложного суждения, запись их с помощью символов, пропозициональных союзов. Полный разбор силлогизма. Запись формально-логического закона.

    контрольная работа [131,4 K], добавлен 23.10.2013

  • Этапы развития логики. Имена ученых, внесших существенный вклад в развитие логики. Ключевые понятия монадической логики второго порядка. Язык логики предикатов. Автоматы Бучи: подход с точки зрения автоматов и полугрупп. Автоматы и бесконечные слова.

    курсовая работа [207,1 K], добавлен 26.03.2012

  • Оценка алгебры Ли как одного из классических объектов современной математики. Основные определения и особенности ассоциативной алгебры. Нильпотентные алгебры Ли, эквивалентность различных определений нильпотентности. Описание алгебр Ли малых размерностей.

    курсовая работа [79,4 K], добавлен 13.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.