Основные теоремы исчисления вероятностей

Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 21.09.2017
Размер файла 127,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.

    презентация [77,5 K], добавлен 01.11.2013

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.

    реферат [402,7 K], добавлен 03.12.2007

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа [328,1 K], добавлен 18.11.2011

  • Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.

    методичка [96,6 K], добавлен 25.12.2010

  • Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

    контрольная работа [106,1 K], добавлен 23.06.2009

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

  • Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.

    контрольная работа [91,0 K], добавлен 31.01.2011

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.

    контрольная работа [22,6 K], добавлен 20.12.2009

  • Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.

    задача [37,9 K], добавлен 19.03.2011

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа [89,7 K], добавлен 07.09.2010

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка [328,7 K], добавлен 04.05.2015

  • Типы событий и их общая характеристика: достоверные, невозможные и случайные. Вероятность как количественная характеристика степени возможности наступления события, теорема их сложения и умножения. Свойства случайных величин и их числовые характеристики.

    презентация [2,1 M], добавлен 20.09.2014

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа [57,3 K], добавлен 07.09.2010

  • Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.

    контрольная работа [480,0 K], добавлен 29.06.2010

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа [344,8 K], добавлен 31.10.2013

  • Примеры пространства элементарных событий. Вероятность появления одного из двух несовместных событий. Функция распределения F(x,y) системы случайных величин. Расчет математического ожидания и дисперсии. Закон генеральной совокупности и его параметры.

    контрольная работа [178,1 K], добавлен 15.06.2012

  • Принципы решения задач по основным разделам теории вероятностей: случайные события и их допустимость, непроизвольные величины, распределения и числовые характеристики градировки, основные предельные теоремы для сумм независимых вероятностных величин.

    контрольная работа [129,1 K], добавлен 03.12.2010

  • Независимость событий. Условная вероятность. Независимость событий и испытаний. События А и В называются независимыми, если Р(АВ) = Р(А). Если Р(В)>0, то независимость А и В эквивалентна равенству Р(А/В) = Р(А).

    реферат [20,4 K], добавлен 31.03.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.