Обучение доказательству неравенств в курсе основной школы
Средние величины, неравенство Коши. Доказательство неравенств методами "от противного" и математической индукции. Использование неравенства Коши-Буняковского при решении тригонометрических уравнений. Решение уравнений с помощью замечательных неравенств.
Рубрика | Математика |
Предмет | Математика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Любовь |
Дата добавления | 23.10.2017 |
Размер файла | 500,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Данный электронный учебник по математике предназначен для изучения темы "Использование неравенств при решении олимпиадных задач". Постановка и реализация задачи. Теоретические сведения по неравенствам Йенсена, Коши, Коши-Буняковского и Бернулли.
научная работа [124,1 K], добавлен 12.12.2009Примеры неравенств, доказываемых техникой одномонотонных последовательностей. Обоснование данного метода для случая с произвольным числом переменных. Доказательство неравенств с минимальным числом переменных. Сравнение метода с доказательством Коши.
реферат [132,8 K], добавлен 05.02.2011Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.
курсовая работа [235,2 K], добавлен 01.02.2015Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа [1,9 M], добавлен 06.05.2010Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа [1,4 M], добавлен 07.09.2010Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.
контрольная работа [209,4 K], добавлен 15.12.2011Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.
курсовая работа [166,4 K], добавлен 11.01.2004Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.
курсовая работа [942,4 K], добавлен 21.12.2009Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.
реферат [118,9 K], добавлен 31.01.2009Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.
реферат [2,0 M], добавлен 18.01.2011Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств. Степенные и показательные функции и их свойства. Опыт проведения занятий со школьниками по теме: "Решение показательно-степенных уравнений и неравенств".
дипломная работа [595,4 K], добавлен 24.11.2007Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.
курсовая работа [124,0 K], добавлен 11.12.2002Однородные системы линейных неравенств и выпуклые конусы. Применение симплекс-метода для отыскания опорного решения системы линейных неравенств, ее геометрический смысл. Основная задача линейного программирования. Теорема Минковского, ее доказательство.
курсовая работа [807,2 K], добавлен 03.04.2015Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа [810,5 K], добавлен 24.11.2013Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.
курсовая работа [86,3 K], добавлен 01.10.2011Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением. Свойства логарифмической функции, методы решения уравнений и неравенств. Использование свойств логарифма. Решение показательных уравнений.
курсовая работа [265,0 K], добавлен 12.10.2010Цели проведения урока по математике на тему "Решение неравенств с одним неизвестным", особенности разработки плана и определение формы его проведения. Алгоритм решения неравенства по вариантам, проведение проверки в парах. Подведение итогов урока.
презентация [63,5 K], добавлен 25.06.2011Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат [726,8 K], добавлен 14.03.2013Существование и способ построения фундаментального набора решений для систем, состоящих из одного или нескольких неравенств. Метод последовательного уменьшения числа неизвестных. Системы однородных и неоднородных произвольных линейных неравенств.
курсовая работа [69,8 K], добавлен 09.12.2011Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.
курсовая работа [609,9 K], добавлен 09.12.2011