Нормальные формы функций алгебры логики

Изучение и характеристика закона функционирования сложных логических устройств, который записывается в виде алгебраического выражения. Рассмотрение содержания и понятия конституенты нуля, называемого макстермом. Ознакомление с таблицей истинности.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 15.11.2017
Размер файла 32,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Нормальные формы функций алгебры логики

Закон функционирования сложных логических устройств записывается в виде алгебраического выражения (ФАЛ) в канонической форме, к которым относится совершенная дизъюнктивная нормальная форма (СДНФ) и совершенная конъюнктивная нормальная форма (СКНФ).

Совершенная дизъюнктивная нормальная форма ФАЛ. Рассмотрим понятие конституенты единицы. Допустим, что функция двух переменных f(x2, x1) на всех наборах их значений равна 1, т.е. является элементарной функцией тождественно равной 1. Представим эту функцию в виде суммы четырех (по числу номеров наборов) конъюнкций двух таких переменных, каждой из которых в таблице истинности соответствует свой набор значений x2 и x1, на котором конъюнкция этих переменных принимает единичной значение:

f(x2, x1) = .

Каждое логическое произведение двух переменных в данной сумме представляет собой конституенту единицы, которую называют иногда минитермом.

Можно показать, что любую функцию алгебры логики можно представить в виде суммы произведений каждой конституенты единицы на значение функции, которое она принимает на том наборе значений переменных x2 и x1, на котором данная конституента единицы равна 1:

f(x2, x1) =

Действительно, если на каком-либо наборе значений переменных x2 и x1 ФАЛ равна нулю, то, естественно, и произведение равно нулю и его можно не писать. Допустим f(1, 1) = 1, а на остальных наборах значений переменных функция равна нулю. Тогда справедлива следующая запись:

f(x2, x1) =.

Оставляя те конституенты единицы, которые принимают единичное значение на тех же наборах значений переменных, что и функция, получим запись ФАЛ в СДНФ.

Следовательно, СДНФ функции алгебры логики представляет собой алгебраическое выражение, которое составлено из дизъюнкции конституент единицы и принимает значение, равное 1 на тех наборах значений переменных, на которых значение заданной функции равно 1. Так, например, для функции ИЛИ:

f(x2, x1) =.

Для составления алгебраического выражения в СДНФ следует взять дизъюнкцию таких конституент единицы, которые соответствуют наборам значений переменных, на которых функция равна 1:

f(x1, x2, … , xn) = f(j1, j2, … , jm) = Kj1, Kj2, … , Kjm,

где j1, j2, … , jm - номера наборов значений переменных, на которых функция равна 1;

Kj1, Kj2, … , Kjm - конституенты единицы, принимающие единичное значение на этих номерах наборов значений переменных.

Пример. Пусть ФАЛ трех переменных задана числовым способом f1(1, 5, 7), тогда СДНФ этой функции примет следующий вид:

f(x3, x2, x1) = f1(1, 5, 7) = .

Здесь первое слагаемое (конституента 1) принимает единичное значение на наборе 001, соответствующем номеру 1, второе - на наборе 101, соответствующем номеру 5, третье - на наборе 111, соответствующем номеру 7.

Используя аксиому х = х + х, представим нашу функцию в следующем виде:

f1(1, 5, 7) = .

Используя распределительный закон, вынесем за скобки в данном выражении конъюнкции вида: и х3х1.

f1(1, 5, 7) = .

Мы получили более простое равносильное выражение для нашей функции, имеющее меньшее число вхождений переменных в функцию по сравнению с СДНФ. Такую форму представления ФАЛ в виде дизъюнкции элементарных конъюнкций обычно называют дизъюнктивной нормальной формой (ДНФ). Любая ФАЛ может иметь одну или несколько равносильных ДНФ и только одну СНДФ.

Совершенная конъюнктивная нормальная форма ФАЛ. Наряду с СДНФ для записи ФАЛ в виде алгебраического выражения в равной мере используют совершенную конъюнктивную нормальную форму СКНФ, которая представляет собой алгебраическое выражение, принимающее значение 0 на тех наборах значений переменных, на которых значение заданной функции также равно 0.

Рассмотрим понятие конституенты нуля, называемой иногда макстермом. Допустим, что функция двух переменных f(x2, x1) на всех наборах их значений принимает значение, равное 0, т.е. является элементарной функцией тождественно равной 0. Представим эту функцию в виде логического произведения (конъюнкции) четырех (по числу номеров наборов) дизъюнкций двух таких переменных, каждой из которых в таблице истинности соответствует свой набор значений x2 и x1, на котором дизъюнкция этих переменных принимает нулевое значение:

f(x2, x1) = .

Каждое логическая сумма двух переменных в данном произведении представляет собой конституенту нуля.

Можно показать, что любую функцию алгебры логики можно представить в виде конъюнкции логических сумм, составленных из конституенты нуля и значения функции, которое она принимает на том наборе значений переменных x2 и x1, на котором данная конституента нуля равна 0:

f(x2, x1) =

Действительно, если на каком-либо наборе значений переменных x2 и x1 ФАЛ равна единице, то, естественно, и сумма равно 1 и ее можно не писать. Допустим f(1, 1) = 0, а на остальных наборах значений переменных функция равна единице. Тогда справедлива следующая запись:

f(x2, x1) =.

Оставляя те конституенты нуля, которые принимают нулевое значение на тех же наборах значений переменных, что и функция, получим запись ФАЛ в СКНФ.

Следовательно, СКНФ функции алгебры логики представляет собой алгебраическое выражение, которое составлено из конъюнкции конституент нуля и принимает значение, равное 0, на тех наборах значений переменных, на которых значение заданной функции равно 0. Так, например, для функции ИЛИ:

f(x2, x1) =.

Для составления алгебраического выражения в СКНФ следует взять конъюнкцию таких конституент нуля, которые соответствуют наборам значений переменных, на которых функция равна 0:

f(x1, x2, … , xn) = f(i1, i2, … , im) = Mi1, Mi2, … , Mik,

где i1, i2, … , im - номера наборов значений переменных, на которых функция равна 0;

Mi1, Mi2, … , Mik - конституенты нуля, принимающие нулевое значение на этих номерах наборов значений переменных.

Пример. Пусть ФАЛ трех переменных задана числовым способом f1(1, 5, 7), следовательно, нулевые значения функции принимает на наборах c номерами (0, 2, 3, 4, 6), тогда СКНФ этой функции примет следующий вид:

f0(0, 2, 3, 4, 6) =.

Здесь первый множитель (конституента 0) принимает нулевое значение на наборе 000, соответствующем номеру 0; второй - на наборе 010, соответствующем номеру 2; третий - на наборе 011, соответствующем номеру 3; четвертый - на наборе 100, соответствующем номеру 4; пятый - на наборе 110, соответствующем номеру 6.

Наряду с СКНФ любая ФАЛ может быть представлена в более простой конъюнктивной нормальной форме (КНФ), которая является конъюнкцией элементарных дизъюнкций.

Например, нашу функцию после проведения минимизации ее аналитического выражения в СКНФ можно представить в виде следующей КНФ:

f0(0, 2, 3, 4, 6) = .

Проведя соответствующие логические преобразования функции с использованием основных законов алгебры логики и аксиом, мы можем перейти от КНФ нашей функции к ее ДНФ. Выполним двойную инверсию исходной функции:

.

Используя правило де Моргана, произведем инверсию выражения под знаком двойной инверсии:

= .

Используя распределительный закон, преобразуем выражение под знаком инверсии, а затем инвертируем преобразованное выражение по правилу де Моргана: алгебраический конституента макстерм

.

Полученное алгебраическое выражение для заданной ФАЛ полностью совпадает с той ДНФ, которую мы получили ранее для этой же функции при рассмотрении СДНФ. Таким образом, для одной и той же функции мы можем иметь два равносильных аналитических выражения для заданной функции: одно в КНФ, другое в ДНФ.

Переход от канонической формы записи ФАЛ к более простой типа ДНФ или КНФ возможен посредством использования различных методов минимизации алгебраических выражений ФАЛ.

Задачи для самостоятельного решения

1. Для функции трех переменных у = f(x3, x2, x1), заданной таблицей истинности, составить алгебраическое выражение в СДНФ.

№ набора

0

1

2

3

4

5

6

7

х3

0

0

0

0

1

1

1

1

х2

0

0

1

1

0

0

1

1

х1

0

1

0

1

0

1

0

1

у

0

1

0

1

1

0

1

0

Ответ: .

2. Для функции трех переменных у = f(x3, x2, x1), заданной таблицей истинности из задачи 1, составить алгебраическое выражение в СКНФ.

Ответ: .

3. Для функции трех переменных у = f(x3, x2, x1) = f1(2, 3, 5, 7), заданной числовым способом, составить алгебраическое выражение в СДНФ.

Ответ: .

4. Для функции трех переменных у = f(x3, x2, x1) = f0(2, 3, 5, 7), заданной числовым способом, составить алгебраическое выражение в СКНФ.

Ответ: .

5. Для функции трех переменных у = f(x3, x2, x1) = f0(2, 3, 5, 7), заданной числовым способом, составить алгебраическое выражение в СДНФ.

Ответ: .

6. Для функции трех переменных у = f(x3, x2, x1) = f1(2, 3, 5, 7), заданной числовым способом, составить алгебраическое выражение в СКНФ.

Ответ: .

7. Для функции трех переменных у = f(x3, x2, x1), заданной картой Карно, составить алгебраическое выражение в СДНФ.

Ответ: .

8. Для функции трех переменных у = f(x3, x2, x1), заданной картой Карно из задачи 7, составить алгебраическое выражение в СКНФ.

Ответ: .

Размещено на Allbest.ru

...

Подобные документы

  • Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.

    реферат [63,3 K], добавлен 06.12.2010

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

  • Основные понятия алгебры логики. Дизъюнктивные и конъюнктивные нормальные формы. Сущность теоремы Шеннона. Булевы функции двух переменных. Последовательное и параллельное соединение двух выключателей. Свойства элементарных функций алгебры логики.

    контрольная работа [345,3 K], добавлен 29.11.2010

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация [67,8 K], добавлен 23.12.2012

  • Основная функционально полная система логических функций. Законы алгебры логики в основной функционально полной системе и их следствия. Переместительный и распределительный законы. Закон инверсии (правило Де Моргана). Системы логических функций.

    реферат [40,5 K], добавлен 17.11.2008

  • История возникновения булевой алгебры, разработка системы исчисления высказываний. Методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Дизъюнкция, конъюнкция и отрицание, таблицы истинности.

    презентация [1,9 M], добавлен 22.02.2014

  • Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.

    контрольная работа [178,2 K], добавлен 20.01.2011

  • Булевы алгебры – решетки особого типа, применяемые при исследовании логики (как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Минимальные формы булевых многочленов. Теоремы абстрактной булевой алгебры.

    курсовая работа [64,7 K], добавлен 12.05.2009

  • Изучение понятия о логической величине. Отличия общих, частных, единичных высказываний. Таблица истинности. Принципы использования простых и составных логических выражений. Вложенное ветвление. Определение наибольшего среди трех чисел неполного ветвления.

    презентация [97,3 K], добавлен 09.10.2013

  • Определение констант нуля и установление эквивалентности линейных функций при помощи таблицы истинности. Нахождение минимальной дизъюнктивной нормальной формы функции с помощью метода неопределенных коэффициентов. Преобразование функции методом Квайна.

    контрольная работа [335,2 K], добавлен 05.07.2014

  • Свойства алгебры Жегалкина. Действия с логическими константами (нулём и единицей). Свойства элементарных булевых функций, задаваемых логическими операциями. Способы построения полиномов с помощью таблиц истинности (метод неопределенных коэффициентов).

    курсовая работа [467,2 K], добавлен 28.11.2014

  • Представление булевой функции в виде дизъюнктивной нормальной формы. Выражение всех логических операции в формуле через конъюнкции, дизъюнкции и отрицания. Сокращение количества слагаемых, входящих в формулу и количества переменных, входящих в слагаемое.

    контрольная работа [1,3 M], добавлен 06.05.2013

  • Элементы алгебры, логические операции над высказываниями. Получение логических следствий из данных формул и посылок для данных логических следствий. Необходимые и достаточные условия. Анализ и синтез релейно-контактных схем. Логические следствия и формы.

    дипломная работа [295,2 K], добавлен 11.12.2010

  • Сокращенные, тупиковые дизъюнктивные нормальные формы. Полные системы булевых функций. Алгоритм Квайна, Мак-Класки минимизации булевой функции. Геометрическое представление логических функций. Геометрический метод минимизации булевых функций. Карты Карно.

    курсовая работа [278,1 K], добавлен 21.02.2009

  • Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.

    контрольная работа [83,3 K], добавлен 26.04.2011

  • Составление таблицы истинности. Получение уравнений функций алгебры логики для заданных выходов. Реализация схемы логического автомата на электромагнитных реле РП-23, на диодной матрице. Реализация структурной схемы логического автомата, на микросхемах.

    курсовая работа [862,4 K], добавлен 12.12.2012

  • Изучение булевых функций. Алгоритм представления булевых функций в виде полинома Жегалкина. Система функций множества. Алгебраические преобразования, метод неопределенных коэффициентов. Таблица истинности для определенного количества переменных.

    курсовая работа [701,9 K], добавлен 27.04.2011

  • Логические константа и переменная. Последовательность выполнения логических операций в логических формулах. Логическая информация и основы логики. Общие, частные и единичные высказывания. Старшинство логических операций. Импликация и эквивалентность.

    курсовая работа [1,0 M], добавлен 27.04.2013

  • Обзор таблицы производных элементарных функций. Понятие промежуточного аргумента. Правила дифференцирования сложных функций. Способ изображения траектории точки в виде изменения ее проекций по осям. Дифференцирование параметрически заданной функции.

    контрольная работа [238,1 K], добавлен 11.08.2009

  • Изучение истинности суждений. Определение отношений понятий с использованием иллюстрации кругов Л. Эйлера. Виды, структура сложных суждений. Противоположные и противоречащие модальности. Структурная схема силлогизмов. Определение правил доказательства.

    контрольная работа [34,4 K], добавлен 02.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.