Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку
Сутність теорії матриць, теореми Перрона-Фробеніуса та Маркова. Визначення квадратної матриці, аналіз змістовних математично-економічних та теоретико-ймовірнісних моделей. Додавання матрицям однакових розмірів, характеристичне рівняння для матриці.
Рубрика | Математика |
Вид | реферат |
Язык | украинский |
Дата добавления | 23.11.2017 |
Размер файла | 70,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1
Реферат
Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку
Відомо [[1]-[10]], яку важливу роль відіграють невід'ємні матриці в математичних моделях економіки, біології, теорії ймовірностей тощо.
Одними з основоположних фактів теорії цих матриць є теореми Перрона. Перрона-Фробеніуса та Маркова. Доведення цих теорем в загальному випадку потребує застосування теорем з таких неелментарних розділів математики, як теорія екстремумів функції багатьох змінних, жорданова нормальна форма тощо.
Мета роботи дати елементарне доведення вищезгаданих теорем Перрона, Перрона-Фробеніуса та Маркова для матриць другого проядку, яке цілком доступне і для школярів 9-го класу. Це дозволить, наприклад, на заняттях шкільних математичних гуртків чи факультативів розглянути та проаналізувати змістовні математично-економічні та теоретико-ймовірносні моделі (наприклад, модель Леонтьєва, випадкове блукання на відрізку) з повним доведенням всіх тверджень.
Необхідні відомості з теорії матриць.
Матриця розмірів m x n - це прямокутна таблиця чисел з m рядків та n стовпців. Позначається матриця так:
Квадратною матрицею n-го порядку зветься матриця розміром n x n. Важливою числовою характеристикою матриці є її визначник, який позначається detA. Для 2x2 матриці . Матриці А та В однакових розмірів називаються рівними, якщо іх відповідні елементи однакові, що записують так: А=В.
З матрицями можна здійснювати такі операції:
Множити на число
Приклад:
Додавати матриці однакових розмірів:
Приклад:
Множити матриці:
Приклад:
Взагалі, добутком матриці А розмірів m x r та матриці В розмірів r x n називається матриця С розмірів m x n, яка позначається АВ. Елемент cij цієї матриці - це сума попарних добутків елементів i-го рядка матриці А та елементів j-го рядка матриці В, а саме:
Якщо А та В квадратні матриці однакового порядку, то їх завжди можна перемножити.
Квадратна матриця порядку n, у якої єлементи , а інші елементи є нулями, називається одиничною матрицією порядку n. Однична матриця має таку властивість: АЕ=ЕА=А, де А - квадратна матриця порядку n, Е - одинична матриця такого ж порядку.
Нехай А - квадратна матриця, тоді матриця А-1 зветься оберненою до матриці А, якщо
Не в кожної матриці є обернена до неї, а саме А-1 існує тоді і тільки тоді, коли .
Беспосередньо можна первірити, що для
Визначення: Число називається власним значенням n x n матриці А, якщо знайдется стовпчик такий, що АХ=Х. При цьому Х називається власним вектором матриці А, що відповідає власному значенню .
Якщо власний вектор Х відповідає власному значенню , то сХ, де с - const, також власний вектор, що відповідає . Власне значення є коренем характеристичного рівняння . Звідки видно, що не у кожної матриці є власні значення.
Визначення: Матриця А зветься додатною, якщо всі її елементи додатні, це позначається А>0.
Теорема Перрона
Нехай А - додатна матриця, тоді А має додатне власне значення r>0 таке, що:
1. r- відповідає єдиний (з точністю до множення на число) власний вектор.
2. інші власні значення по модулю < r.
3. власний вектор, що відповідає r, можна вибрати додатним (тобто з додатними елементами).
Доведення теореми для 2х2 матриць.
Нехай .
Тоді .
Напишемо характеристичне рівняння для матриці А:
.
Це квадратне рівніння з дискримінантом:
І тому
Тобто твердження теореми 1 і 2 доведені, якщо r=1.
Знайдемо власний вектор , що відповідає власному значенню 1 з рівності
Тоді
, або
Враховуючи, що
перепишемо систему у вигляді:
Але і тому рівняння системи пропорціональні, а це означає, що одне з них можна відкинути.
Знайдемо x1 з першого рівняння системи
Щоб довести, що власний вектор можна вибрати додатним, достатньо перевірити, що ,тому що поклавши отримаємо x1>0.
Враховуючи, що b>0 треба довести, що , але це випливає з того, що , бо cb>0.
Таким чином третє твердження доведено, а з ним доведена теорема.
Визначення: Матриця А n-го порядку зветься нерозкладною, якщо однаковим переставленням рядків та стовпців її не можна привести до виду , де А1, А2 - квадратні матриці розмірів k x k та (n-k) x (n-k) відповідно. Для 2х2 матриць це означає, що та
Визначення: Матриця А зветься невід'ємною, якщо всі її елементи невід'ємні.
Зауваження: Фробеніус довів, що твердження теореми Перрона залишаються в силі для нерозкладних невід'ємних матриць. Це можна довести, просто повторивши наше доведення теореми Перрона для 2х2 матриць у випадку, коли один або обидва діагональних елемента дорівнюють нулю.
Визначення: Квадратна матриця називається стохастичною, якщо
1)
2)
Теорема Маркова
Нехай для стохастичної матриці P існує натуральне число k0 таке, що (тобто всі елементи додатні). Тоді
1. (існування границі матриці означає, що існує границя кожного її елементу)
2. Матриця - має однакові рядки.
3. Всі елементи цих рядків додатні.
Доведення теореми для 2х2 матриць.
Запишемо стохастичну матрицю у вигляді , де
Запишемо її характеристичне рівняння: ,
Це квадратне рівняння з дискрімінантом:
І тому
З урахуванням маємо , але якщо , то це значить, що p=q=1 або p=q=0, відкіля матриця P буде мати вигляд , або і тоді Pn містить нулі , що суперечить умові. Таким чином .
Беспосередньою перевіркою з урахуванням стохастичності встановлюємо, що власному значенню відповідає власний вектор , де x1=x2, тобто, наприклад власний вектор. Знайдемо власний вектор , що відповідає власному значенню .
За визначенням
перрон фробеніус теорема матриця
Звідки
Згадуючи, що отримуємо
Очевидно, що рівняння системи пропорційні, тому одне з них можна відкинути. Знайдемо y1 з першого рівняння: або звідки , але , бо в протилежному випадку дана матриця мала б вигяд: , а тоді матриця мала б нульовий елемент , що суперечить умові. Тому можна записати, що
Доведемо тепер твердження 1 теореми.
Розглянемо матрицю S, стовпцями якої є власні вектори матриці P. Нам необхідно отримати зручну формулу для Pn.
Позначимо .
Оскілки , то існує S-1. Перепишемо рівняння та у матричній формі
або .
Відкіля і взагалі
Знайдемо границю Pn:
Твердження 1 теореми доведено.
Доведемо тепер, що рядки матриці однакові. Для цього обчиcлимо .
Оскільки , то Ми бачимо, що рядки матриці - однакові. Доведемо тепер, що їх елементи додатні. Для цього врахуємо отриману раніше залежність
Для того, щоб довести треба довести, що , треба довести, що та .
Маємо
,
, тому що p>0 і q >0
Теорема доказана.
Зауваження1 В процесі доведення ми вивели, що для 2х2 матриць
Зауваження2 Позначимо рядки граничної матриці . Тоді можна знайти з умови:
Доведення.
Оскільки
Зівдки
Або
Звідки
Зокрема, для 2х2 матриці
Умовою рядок визначається однозначно, що для 2х2 матриці можна перевірити.
В роботі дані для матриць другого порядку елементарні доведення таких фундаментальних теорем теорії невід'ємних матриць. як теореми Перрона, Перрона-Фробеніуса, Маркова.
У відомій нам літературі повне доведення цих теорем дається для загального випадку матриць n-го порядку з використанням неелемнтарних теорем і методів. А математичний апарат, який використовується в даній роботі, це: аналіз поведінки розв'язків квадратного рівняння та розв'язків системи двох лінійних рівнянь в залежності від коефіцієнтів.
Робота може бути використана при проведенні додаткових занять, присвячених розгляду вибраних неелементарних питань математики, за допомогою методів, які доступні школярам.
Список літератури
С.А. Ашманов. Математические модели и метод в экономике.МГУ. 1980
С.А. Ашманов. Введение в математическую экономику. “Наука”.М., 1984
Р. Беллман. Введение в теорию матриц. “Наука”. М. 1969
Ф.Р. Гантмахер. Теория матриц. “Наука”. М.,1967
Б.В. Гнеденко. Курс теории вероятностей. “Наука”. М., 1988
С. Карлин. Математические метод в теории игр, программирования и экономике. “Мир”. М., 1964
Дж. Кемени, Дж. Скелл, Дж. Томпсон. Введение в конечную математику. Иностранная литература. М. 1963
П. Ланкастер. Теория матриц. “Наука”. М. 1978
Ю.М. Свирежев, Д.О.Логофет. Устойчивость биологических сообществ. “Наука”. М. 1978
В. Феллер. Введение в теорию вероятностей и ее приложение.Т1. “Мир”.М. 1984
Размещено на Allbest.ru
...Подобные документы
Теорія обернених матриць та їх знаходження за формулою. Оберненні матриці на основі яких складається написання програми обчислення оберненої матриці до заданої. Побудова матриць та їх характеристика. Приклади проведення розрахунків при обчисленні матриць.
курсовая работа [96,8 K], добавлен 06.12.2008Теорія приведення загального рішення кривих і поверхонь другого порядку до канонічного виду в системі побудови графіків. Основні поняття (лінійний оператор, власний вектор і власне значення матриці, характеристичне рівняння, квадратична форма) і теореми.
курсовая работа [328,3 K], добавлен 13.11.2012Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.
курсовая работа [445,1 K], добавлен 03.04.2010Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.
курсовая работа [126,8 K], добавлен 20.04.2011Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.
презентация [787,6 K], добавлен 17.01.2015Розв'язання системи рівнянь методом Гауса і за формулами Крамера. Знаходження власних значень і векторів матриці, косинуса кута між векторами. Визначення з якої кількості товару більш вигідним становиться продаж у магазині. Диференціювання функцій.
контрольная работа [104,7 K], добавлен 06.03.2013Аналіз рівняння еліпсоїда, властивостей кривих і поверхонь другого порядку. Канонічне рівняння гіперболи за допомогою перетворень паралельного переносу й повороту координатних осей. Дослідження форми поверхні другого порядку методом перетину площинами.
курсовая работа [137,1 K], добавлен 27.12.2010Вироджена (особлива) або не вироджена (не особлива) квадратна матриця та вироджене або не вироджене лінійне перетворення невідомих. Добуток матриці, асоціативності множення матриць. Опис програми Matrtest, містить початкову матрицю та її розмірність.
курсовая работа [95,0 K], добавлен 16.03.2009Визначення системи лінійних рівнянь та її розв’язання. Поняття рангу матриці, правило Крамера та види перетворень з матрицею. Способи знайдення оберненої матриці А–1 до невиродженої матриці А. Контрольні запитання та приклади розв’язування задач.
задача [73,5 K], добавлен 25.03.2011Основные понятия теории марковских цепей. Теория о предельных вероятностях. Области применения цепей Маркова. Управляемые цепи Маркова. Выбор стратегии. Оптимальная стратегия является марковской - может зависеть еще и от момента времени принятия решения.
реферат [75,6 K], добавлен 08.03.2004Основні поняття чисельних методів розв’язання систем лінійних алгебраїчних рівнянь. Алгоритм Гаусса зведення системи до східчастого виду послідовним застосуванням елементарних перетворень. Зворотній хід методу Жордана-Гаусса. Метод оберненої матриці.
курсовая работа [165,1 K], добавлен 18.06.2015Вивчення теорем Чеви та Менелая на площині та в просторі, доведення нетривіальних наслідків цих теорем та розв’язання задач за їх допомогою. Застосування Теореми Менелая при доведенні теорем (наприклад, теорем Дезарга, Паппа, Паскаля, Гаусса та інших).
дипломная работа [4,0 M], добавлен 12.08.2010Класифікація та типи чисельних методів розв’язування систем лінійних рівнянь і обернення звернення матриць точні, ітераційні та комбіновані. Їх порівняльна характеристика та умови використання в окремих випадках. Вектори та операції над ними, норми.
презентация [85,6 K], добавлен 06.02.2014Сумісність лінійних алгебраїчних рівнянь. Найвищий порядок відмінних від нуля мінорів матриці. Детермінант квадратної матриці. Фундаментальна система розв’язків та загальний розв'язок системи лінійних однорідних рівнянь. Приклади розв’язання завдань.
курсовая работа [86,0 K], добавлен 15.09.2008Запис системи рівнянь та їх розв'язання за допомогою методів оберненої матриці та Гауса. Поняття вектора-стовпця з невідомих та вільних членів. Пошук оберненої матриці до даної. Послідовне виключення невідомих за допомогою елементарних перетворень.
контрольная работа [115,2 K], добавлен 16.07.2010Диференціальні рівняння другого порядку, які допускають пониження порядку. Лінійні диференціальні рівняння II порядку зі сталими коефіцієнтами. Метод варіації довільних сталих як загальний метод розв’язування та й приклад розв’язання задачі Коші.
лекция [202,1 K], добавлен 30.04.2014Розв'язання задач з теорії множин та математичної логіки. Визначення основних характеристик графа г (Х,W). Розклад функцій дискретного аргументу в ряди по базисним функціям. Побудова та доведення діаграми Ейлера-Вена. Побудова матриці інцидентності графа.
курсовая работа [988,5 K], добавлен 20.04.2012Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.
курсовая работа [1,9 M], добавлен 13.11.2012Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.
лекция [126,9 K], добавлен 30.04.2014Комічні вибірки з конспектів студентів механічно-математичного факультету. Особливості доведення теорем Зільберта-Штольца та Штрассермана. Принцип локалізації в’язів до (n-8) порядку включно. Аналіз та характеристика N-кутників у просторі Зільберта.
учебное пособие [315,9 K], добавлен 28.03.2010