Векторы. Векторы на плоскости

Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.

Рубрика Математика
Предмет Математика
Вид презентация
Язык русский
Прислал(а) Рауф
Дата добавления 18.12.2017
Размер файла 957,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.

    презентация [98,6 K], добавлен 21.09.2013

  • Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.

    творческая работа [481,5 K], добавлен 23.06.2009

  • Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.

    контрольная работа [102,6 K], добавлен 03.07.2011

  • Понятия векторной алгебры: нулевой, единичный, противоположный и коллинеарный векторы. Проекция вектора на ось. Векторный базис на плоскости и в пространстве. Декартова прямоугольная система координат. Действия над векторами, заданными координатами.

    презентация [217,3 K], добавлен 16.11.2014

  • Матричные и векторные вычисления; коллинеарные и компланарные векторы. Определение скалярного произведения векторных величин в трехмерном пространстве. Решение системы линейных уравнений с расширенной матрицей, элементарные преобразования над строками.

    контрольная работа [79,6 K], добавлен 30.12.2010

  • Особенности изучения векторного метода в школьном курсе геометрии. История возникновения и становления аналитических методов. Различные подходы к определению понятия вектора в математике. Логико-дидактический анализ "Векторы в пространстве" в 10 классе.

    дипломная работа [894,3 K], добавлен 08.12.2013

  • Аксиомы стереометрии, простейшие следствия. Параллельность прямых и плоскостей. Перпендикулярность прямых, плоскостей. Декартовы координаты и векторы в пространстве. Доказательство того, что через две скрещивающиеся можно провести параллельные плоскости.

    книга [4,2 M], добавлен 12.02.2009

  • Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.

    курсовая работа [533,7 K], добавлен 15.07.2010

  • Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.

    курс лекций [119,3 K], добавлен 21.04.2009

  • Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.

    презентация [106,9 K], добавлен 21.09.2013

  • Общее и каноническое уравнение прямой, декартова прямоугольная система. Перпендикулярность вектора к прямой и параметрические уравнения. Угловой коэффициент и наклон прямой к оси. Тангенс угла наклона и представление отрезка, отсекаемого линией.

    лекция [124,0 K], добавлен 17.12.2011

  • Варианты выбора геометрической фигуры для заполнения плоскости "без просветов". Задача царицы Дидоны. Геометрия воскового кружева пчелиных сот. Модель пчелиной соты. Использование математических принципов "пчелиной" технологии в различных областях.

    реферат [447,7 K], добавлен 06.12.2013

  • Доказательство теоремы о том, что любая точка перпендикуляра, проходящего через середину данного отрезка, равноудалена от его концов, и что если данная точка равноудалена от концов отрезка, то она лежит на прямой, перпендикулярной данному отрезку.

    презентация [71,5 K], добавлен 02.12.2010

  • Случай движения, при котором все точки пространства перемещаются в одном и том же пространстве и расстоянии. Параллельный перенос на координатной прямой и плоскости в направлении данного вектора на его длину. Построение трапеции параллельным переносом.

    презентация [121,1 K], добавлен 15.02.2012

  • Основные фигуры в пространстве. Геометрические тела: куб, параллелепипед, тетраэдр. Способ задания плоскости. Взаимное расположение прямой и плоскости. Следствия из аксиом стереометрии. Геометрические понятия: вершина, прямая, точка, ребро, грань.

    презентация [316,1 K], добавлен 10.11.2013

  • Использование формул объема прямоугольного параллелепипеда и площади прямоугольника при расчете расходных материалов для изготовления различных упаковок. Осуществление связей математики с окружающим миром в целях улучшения экономичности упаковки чая.

    научная работа [44,6 K], добавлен 11.01.2010

  • Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.

    курсовая работа [573,7 K], добавлен 27.08.2012

  • Сущность планиметрии как науки о свойствах точек и прямых на плоскости. Понятие точки, прямой и плоскости, принятие утверждений без доказательств. Особенности построения и содержание аксиом принадлежности, измерения, параллельности, откладывания.

    презентация [77,7 K], добавлен 12.04.2012

  • Теория игр – раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта. Итеративный метод Брауна-Робинсона. Монотонный итеративный алгоритм решения матричных игр.

    дипломная работа [81,0 K], добавлен 08.08.2007

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа [115,2 K], добавлен 10.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.