Математические модели идентификации технического состояния турбоустановок на основе нечеткой информации

Построение интеллектуальных экспертных диагностических систем на основе четкой и нечеткой информации для диагностики сложных турбоэнергоустановок. Разработка модели и методов нечеткой идентификации, оптимизации и оптимального управления турбоустановки.

Рубрика Математика
Вид автореферат
Язык русский
Дата добавления 14.02.2018
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

20

Размещено на http://www.Allbest.ru/

20

Размещено на http://www.Allbest.ru/

Специальность: 05.13.18 - математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора технических наук

Тема:

Математические модели идентификации технического состояния турбоустановок на основе нечеткой информации

Крохин Геннадий Дмитриевич

Иркутск - 2008

Работа выполнена в Новосибирском государственном техническом университете

Научный консультант: доктор технических наук, профессор Гриф Михаил Геннадьевич

Официальные оппоненты:

доктор технических наук, профессор Гамм Александр Зельманович

доктор технических наук, профессор Хабаров Валерий Иванович

доктор технических наук, профессор Загоруйко Николай Григорьевич

Ведущая организация - Московский энергетический институт (технический университет), г. Москва

С диссертацией можно ознакомиться в библиотеке Института систем энергетики им. Л.А. Мелентьева СО РАН.

Ученый секретарь Диссертационного совета Д 003. 017. 01 доктор технических наук, профессор Клер А.М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Для энергетики в настоящее время характерна интенсификация использования мощностей и ресурсов установленного оборудования. Это может быть достигнуто на основе интеллектуальной диагностики эксплуатационного состояния и режимов использования оборудования. Рост степени ответственности принимаемых решений по времени вывода оборудования в ремонт ужесточил требования к качеству моделей идентификации, основой которых является информация, получаемая при диагностике состояния энергоустановок. Их выполнение в условиях старых форм технического обслуживания по системе ППР (планово-предупредительных ремонтов) стало неэффективным. Возникла проблема недостаточной адекватности диагностических моделей и моделей принятия решений о выводе турбоустановки в ремонт или снижении нагрузки, вследствие не использования нечеткой информации о состоянии оборудования, а также повышенной суммарной неопределенности, накапливаемой за время эксплуатации.

Различные направления в решении этой проблемы рассматривались следующим рядом авторов. Основы применения современных методов математического моделирования, прикладные методы теории систем и системного анализа, методы исследования операций, для исследования теплоэнергетических установок и ТЭС заложены в работах школы Сибирского энергетического института (Л.А. Мелентьев, Ю.Н. Руденко, Г.Б. Попырин, С.М. Каплун, Ю.В. Наумов, А.З. Гамм, А.М. Клер, Н.Н. Новицкий). Оригинальные подходы к моделированию и исследованию теплоэнергетических установок развиты в работах ЦНИИКА (Ф.А. Вульман, Н.С. Хорьков), в ИПМаш. Укр. АН (А.А. Шубенко-Шубин, А.А. Палагин). Выполнены исследования оперативного контроля работы энергоблоков, с целью разработки методов организации диагностического обеспечения основного и управляющего оборудования электростанций, АН УССР (В.Ф. Скляров, В.А. Гуляев, В.М. Чаплыга, М.А. Дуэль, Ю.М. Мацевитый, Б.Е. Патон, В.А. Яницкий), НПО ЦКТИ, НПО ЦНИИТмаш., ПО ЛМЗ (Л.А. Хоменок, А.Н. Ремезов, И.А. Ковалев, В.С. Шаргородский, С.Ш. Розенберг, В.И. Олимпиев, Л.П. Сафонов, В.Г. Орлик), СЭИ (А.М. Клер, Н.П. Деканова, Э.А. Тюрина), ВТИ (А.Ш. Лейзерович, В.Б. Рубин). ВТИ получен опыт разработки локальных подсистем диагностического контроля турбоустановок ТЭС (А.В. Мозгалевский, Д.В. Гаскаров, А.Ш. Лейзерович, Н.Ф. Комаров, Н.Н. Борисова). Проведены диагностические исследования неисправностей состояния энергооборудования (В.А. Яницкий, Н.Г. Барыкова, А.Б. Кузьмин, А.Д. Трухний, И.А. Перминов, В.Г. Орлик, А.А. Гординский, Л.С. Баран, А.М. Макаров, С.Ш. Розенберг, Л.А. Хоменок, В.Я. Гиршфельд, В.А. Цветков, Г.А. Уланов, В.Г. Канцедалов, Г.П. Берлявский, В.Ф. Злепко). Определено состояние крупных ТГ (В.А. Алексеев, А.А. Палагин, А.В. Ефимов). Исследования современного состояния, проблем эксплуатации и путей обновления основного и вспомогательного оборудования ТЭС проведены НПО ЦКТИ и СЭИ (Л.А. Хоменок, А.П. Меренков, Л.В. Массель, А.М. Клер). Исследования по разработке и созданию новых методов и средств неразрушающего контроля, включая дистанционный контроль и прогнозирование долговечности металла оборудования ТЭС и АЭС, выполнены Юж. ВТИ (А.А. Мадоян, В.Г. Канцедалов, П.Б. Самойленко, Б.Р. Бродский, В.С. Гребенник, В.Ф. Злепко, Т.Г. Березина, Н.В. Бугай, И.И. Трунин). Исследования для разработки методик алгоритмического обеспечения систем централизованного контроля проведены Институтом проблем управления АН (И.М. Шенброт, Э.Л. Ицкович). Разработки измерительных информационных систем (ИИС) выполнены Институтом автоматики и электрометрии СО АН СССР (К.Б. Карандеев, Г.И. Кавалеров, С.М. Мандельштам, М.П. Цапенко, В.И. Рабинович, В.М. Ефимов). Алгоритмам переработки сигналов датчиков систем автоматического и централизованного контроля посвящены работы МЭИ (Ф.Е. Темников, А.С. Немировский, П.В. Новицкий, И.А. Зограф). Выполнены исследования НЭТИ для разработки экспертных систем анализа многофакторных объектов и формализации знаний (В.И. Денисов, И.А. Полетаева, В.И. Хабаров). Решение задач реального времени в электроэнергетике выполнено СЭИ (А.З. Гамм, Ю.Н. Кучеров, С.И. Паламарчук). МЭИ получен опыт разработки инструментальной среды для построения интеллектуальной системы оперативной диагностики с использованием декларативных знаний и нечетких алгоритмов (Э.К. Аракелян, М.А. Панько). В последние десятилетия научный интерес направился на создание автоматизированных систем, предназначенных для повышения эффективности управления отдельно функционирующими энергоблоками и целыми ТЭС. Этому способствовало появление нового поколения средств информационно-измерительной техники - процессорных измерительных средств (ПрИС), в которых программируемая вычислительная мощность входит в состав измерительной цепи и участвует в получении результатов измерения. ПРиС - следствие компьютеризации измерений, проявляющейся в применении вычислительной техники для автоматизации управления функционированием и обработки результатов измерения, и для реализации части измерительной процедуры в числовой форме на программной основе (Г.Я. Мирский, Э.И. Цветков, J. Finkelstein, М. Клейн, Г. Морган, Л. Рабинер, Б. Гоулд, D. Driankov, G.J. Klir, G. Olsson). Исследования по выявлению эффективности введения автоматизированных систем комплексной технической диагностики в контур управления энергоблоков ТЭС и их разработки проведены ВТИ (А.Ш. Лейзерович, А.А. Гординский, А.М. Журавель), НПО ЦКТИ (Л.П. Сафонов, А.В. Антонович, А.М. Заводовский, О.Т. Ильченко, С.В. Яцкевич).

Однако, как показывает проведенный анализ, эта проблема не могла быть успешно решена без рассмотрения целостности теплоэнергетического процесса и турбоустановки как единого “механизма”.

В результате, создаваемая методология технического диагностирования не позволяла уменьшить неопределенность исходной информации о техническом состоянии турбоэнергоустановки. Это и определило научную и техническую проблему, которая решается автором в представленной диссертационной работе.

Данная диссертационная работа решает обозначенную проблему: построение интеллектуальных экспертных диагностических систем использующих четкую и нечеткую информацию для диагностики сложных турбоэнергоустановок.

Объектом исследования настоящей работы являются диагностические процессы состояния функционирующих турбоэнергоустановок электростанций.

Предметом исследования является разработка и исследование интеллектуальных экспертных диагностических систем на основе вероятностных, четких и нечетких параметров технической диагностики.

Цель работы. Целью диссертационной работы является: повышение качества диагностики и идентификации технического состояния сложных турбоэнергоустановок на основе разработки методологии и моделей реализации интеллектуальных экспертных диагностических систем распознавания состояния с использованием четкой и нечеткой информации.

Задачи исследования:

1. Теоретический анализ представленных в научной литературе математических моделей технического состояния турбоустановок на основе технической диагностики.

2. Конструирование информационных моделей эксплуатационного и технического состояния турбоустановки с учетом анализа, систематизации и классификации, при экспертном, стохастическом, нечетком и четком подходах.

3. Разработка комплексной модели и алгоритма распознавания дефектных состояний турбоустановки с использованием нечеткой информации.

4. Структурирование модели интеллектуальной поддержки принятия решений при оперативном управлении нестационарными режимами турбоустановок, с учетом нечеткой исходной информации.

5. Разработка модели и методов нечеткой идентификации, нечеткой оптимизации и нечеткого оптимального управления турбоустановки.

6. Разработка моделей определения области устойчивости и допустимости режимов турбоустановки при различных нагрузках, с использованием нечеткой информации и нечетких знаний о состоянии.

7. Разработка моделей ресурса, надежности и долговечности турбоустановки с учетом нечеткой информации и нечетких знаний о состоянии.

8. Определение основных принципов методологии и средств реализации интеллектуальных экспертных диагностических систем контроля и анализа функционирования турбоэнергоустановок на основе повышения качества диагностики и идентификации технического состояния в процессах эксплуатации с учетом четкой и нечеткой информации.

9. Разработка интеллектуального диагностического комплекса («система контроля, анализа и слежения за изменением состояния турбоустановки») для турбоэнергоустановок ТЭС (исследовательский вариант).

Методы исследования. Разработанные в диссертации научные положения базируются на системном подходе к исследованию турбоустановок, моделированию и идентификации на основе технической диагностики их состояния с целью увеличения срока эксплуатации, эффективности и надежности работы с учетом неопределенности исходной информации.

Для решения поставленных задач в диссертации применялись разнообразные математические методы с использованием натурного и имитационного экспериментов, а также методы термодинамического и энергетического анализа, теории вероятностей и математической статистики, исследования операций, математического моделирования, математического программирования, прикладные методы теории систем и системного анализа, теории управления, теории информации, теории искусственного интеллекта, теории оптимизации, теории надежности, теории решений, теории нечетких множеств, нечетких логик, теории графов и теории распознавания образов.

Научная новизна.

1. В диссертации впервые разработаны методологические основы и принципы нового для турбоэнергоустановок научного направления - интеллектуальные системы контроля и анализа функционирования турбоустановок на основе повышения качества диагностики и идентификации технического состояния в процессах эксплуатации с использованием экспертной, стохастической, четкой и нечеткой информации.

2. Сконструированы информационные модели эксплуатационного и технического состояния турбоустановки для создания новой концепции “мягкого регулирования” технического обслуживания турбоустановок с учетом времени жизни в эксплуатации и отработке, и нечеткой информации.

3. Разработаны комплексная модель и алгоритм распознавания дефектных состояний турбоустановок с использованием нечеткой информации.

4. Созданы модель и алгоритм интеллектуальной поддержки принятия решений при оперативном управлении нестационарными режимами турбоустановок с использованием нечеткой информации.

5. Разработаны модели технического обслуживания состояния турбоустановки, включая модели ресурса, надежности и долговечности турбоустановки с использованием нечеткой информации.

6. Разработаны алгоритм и управляющие правила нечеткого регулятора разрежения в конденсаторе турбоустановки.

7. Разработан и апробирован интеллектуальный программно-вычислительный диагностический комплекс («система контроля, анализа и слежения за изменением состояния турбоустановки») для турбоэнергоустановок ТЭС (исследовательский вариант).

Практическая значимость и реализация результатов

Полученные автором результаты в развитии новой концепции «технического обслуживания эксплуатации турбоустановок по фактическому состоянию», подтверждают необходимость применения интегрированных подходов и методов, использующих информационное и вычислительное разнообразие как основное средство решения. Использование нечеткой информации и применение для ее формализации и обработки методологии искусственного интеллекта повышает качество моделей идентификации, прогнозирования, принятия решений и оптимизации при диагностике состояния и управления турбоустановок.

В результате, это позволит сформировать новую интеллектуальную (экспертную) среду, обеспечить представление объекта управления адекватной его состоянию моделью эксплуатации, встроенной в контур управления ТЭС. Решение этой проблемы - актуальная задача.

Использование разработанной автором методологии интеллектуального управления основанной на нечетких моделях идентификации состояния и технической диагностики механизмов ТЭС способствует увеличению срока службы оборудования, повышению его эффективности, надежности и готовности выполнять необходимый режим нагрузки, выработке на основе этого дополнительных электро - и теплоэнергии, и позволяют, в результате, получить народнохозяйственный эффект. Принятие эффективных решений и подготовленных рекомендаций для обслуживающего персонала ТЭС, при управлении энергетическими установками с помощью системы поддержки и мониторинга состояния в диагностическом комплексе SKAIS, обеспечивают производство электро - и теплоэнергии необходимого количества и качества. Это осуществляется за счет поддержки работоспособности, своевременного обнаружения неисправностей и предупреждения развития дефектов и отказов.

Предусмотрена возможность независимого применения результатов из разделов работы, а именно: разработанные математические модели и их характеристики в виде аналитических зависимостей, алгоритмы и рекомендации для решения отдельных задач управления и технического обслуживания турбоэнергоустановок, контроля состояния оборудования и определения его эффективности.

Полученные результаты могут использоваться также в целом ряде задач: технико-экономического анализа, нормировании, оптимизации, управлении режимами и распределении нагрузки между агрегатами ТЭС, с учетом фактического состояния и ресурса турбоустановок. Особенно эффективно применение их для: принятия решений оценивания состояний при выводе в ремонт или модернизацию, определения оптимального межремонтного периода, развития и прогнозирования работоспособности на отдаленную перспективу, определения и оценки ресурса и долговечности основных узлов, при техническом перевооружении, а также проектирования новых, модернизации или замене отработавших ресурс элементов и узлов турбоустановок.

Представление состояния механизма нелинейными моделями идентификации на интервалах времени эксплуатации позволяет обеспечить компактность и унификацию информационной базы и структуры элементов турбоустановок. Свойство адекватности предложенных моделей и их диагностируемости обеспечивает эффективное согласование данных, относящихся к разным иерархическим уровням и задачам управления, а также объемам вычислений для работы в режиме реального времени.

Предложенные модели состояния механизма в виде непрерывных во времени функций предоставляют возможность разработки качественно новых методов расчета, оценки и идентификации состояния турбоэнергоустановок на основе диагностики. При этом параметры теплоэнергетического режима и состояния турбоэнергоустановки также могут быть представлены функциями времени.

Разработанные в диссертации методы и алгоритмы легли в основу базы знаний интеллектуального диагностического комплекса SKAIS, формирующего информационную и интеллектуальную базы о поведении турбоэнергоустановки и её элементов для решения задач прогнозирования и оперативного управления агрегатами ТЭС на основе диагностики, оценивания фактического состояния турбоустановок и их готовности.

Результаты оперативного прогноза состояния могут использоваться ДИС-ом ТЭС при ведении режима, оперативной оптимизации текущего режима, своевременном выводе агрегата в ремонт или введении ограничений при выполнении диспетчерского графика нагрузки.

Полученные средства интеллектуальной системы контроля и анализа функционирования для турбоустановок могут быть использованы и в других непрерывных производствах с идентичной технологией.

Научные результаты работы использованы институтом «Новосибирсктеплоэлектропроект ОАО "Сибирский Энергетический Научно-Технический Центр"», при выполнении проектных работ по реконструкции и модернизации Новосибирских ТЭЦ, а также ЗАО “СибКОТЭС”. Разработанные методы, алгоритмы и программы внедрены в ОАО "Новосибирскэнерго" Новосибирской ТЭЦ-4. Программный комплекс SKAIS является составной частью АСУ ТП Новосибирской ТЭЦ-5 и Нерюнгринской ГРЭС и находится в опытной эксплуатации, обеспечивая обслуживающий персонал по диагностике состояния турбоустановки Т-180/210-130 ЛМЗ.

Проведены экспериментальные исследования диагностических моделей оценивания изменения параметров вибросостояния на надежность вращающихся агрегатов ТЭС, обслуживаемых ОАО "Сибэнергоремонт". Используемые в работе статистические модели были апробированы автором: при разработке системы автоматизированного анализа технико-экономических показателей турбоагрегатов Иркутской ТЭЦ-10, при диагностических исследованиях турбоагрегатов Новосибирской ТЭЦ-4, Красноярской ТЭЦ-2 и Петропавловск-Камчатской ТЭЦ-1, а также разработке нормативных энергетических характеристик энергоустановок ряда ТЭС и ТЭЦ Сибири.

Основные методические положения, алгоритмы, программы и рекомендации, полученные в работе, а также 3 учебных пособия используются при выполнении научно - технических, курсовых и дипломных работ в НГТУ, курсах повышения квалификации руководящих работников и специалистов - энергетиков (НФ ПЭИ п.к.), ХФ ЦКБ "Энергоремонт", ЦКБ "Энергоремонт". Внедрение результатов в практику проектирования и эксплуатации подтверждено шестью Актами использования научно - исследовательской работы в теплоэнергетике.

Основные положения и результаты, выносимые на защиту:

1. Методологические основы и принципы нового для турбоэнергоустановок научного направления - интеллектуальные системы контроля и анализа функционирования турбоустановок на основе повышения качества диагностики и идентификации технического состояния в процессах эксплуатации, с использованием экспертной, стохастической, четкой и нечеткой информации.

2. Информационные модели эксплуатационного и технического состояния турбоустановки, для создания новой концепции “мягкого регулирования” технического обслуживания турбоустановок, с учетом времени жизни, в эксплуатации и отработке, при нечеткой информации.

3. Комплексная модель и алгоритм распознавания дефектных состояний турбоустановок, с использованием нечеткой информации.

4. Модель и алгоритм интеллектуальной поддержки принятия решений при оперативном управлении нестационарными режимами турбоустановок, с использованием нечеткой информации.

5. Модели технического обслуживания состояния турбоустановки, включая модели ресурса, надежности и долговечности турбоустановки, с использованием нечеткой информации.

6. Алгоритм и управляющие правила нечеткого регулятора разрежения в конденсаторе турбоустановки.

7. Интеллектуальный программно-вычислительный диагностический комплекс («система контроля, анализа и слежения за изменением состояния турбоустановки») для турбоэнергоустановок ТЭС (исследовательский вариант).

Апробация работы

Полученные результаты исследований докладывались и обсуждались: на научно-техническом совещании «Оптимизации систем технического водоснабжения ТЭС и АЭС» (г. Зеленодольск, Криворожская ГРЭС-2, 1981 г.); на Всесоюзном научно-техническом совещании «Состояние и пути развития средств технической диагностики тепломеханического оборудования» (г. Москва, ВДНХ, 1982 г.); на Всесоюзном научно-техническом совещании «Опыт разработки, внедрения и эксплуатации АСУ ТП на ТЭЦ» (г. Минск, Зап. ВТИ, 1991 г.); на научно-технической конференции «Региональные проблемы энергетики Поволжья» (г. Саратов, СПИ, 1992г.); на межвузовском научном семинаре по проблемам теплоэнергетики (г. Балаково, 1994г.); на 2-й, 3-й, 4-й и 5-й международной научно-технической конференции «Актуальные проблемы электронного приборостроения, АПЭП-94, 96, 98 и АПЭП-2000» (г. Новосибирск, НГТУ, 1994, 1996, 1998 и 2000 г.); на международной научно-технической конференции «Научные основы высоких технологий» (г. Новосибирск, НГТУ, 1997г.); на третьем и четвертом Сибирском конгрессе по прикладной и индустриальной математике, ИНПРИМ-98 и ИНПРИМ-2000 (г. Новосибирск, ИМ СО РАН, 1998 и 2000 г.); на 30-м и 33-м теплоэнергетических коллоквиумах: «Турбомашины для ТЭС. Проблемы развития. Использование. Конструкции и результаты применения» и «Надежность теплоэнергоустановок в условиях либерализации рынка энергии» (г. Дрезден, Технический университет, Германия, 1998 и 2001г.); на 3-м и 4-м Русско-Корейском международном симпозиуме по науке и технике, KORUS'99 и KORUS'2000 (г. Новосибирск, НГТУ, 1999 г. и г. Ульсан, Корея, 2000 г.); на 7-м Европейском конгрессе по искусственному интеллекту и мягким вычислениям, EUFIT'99 (г. Аахен, Рейнско-Вестфальский технический университет, Германия, 1999 г.); на международной научно-технической конференции «Информационные системы и технологии» ИСТ'2000 (г. Новосибирск, НГТУ, 2000 г.); на международных конференциях CONTROL-2003, CONTROL-2005 и CONTROL-2008 «Теория и практика построения и функционирования АСУ ТП» (г. Москва, МЭИ (ТУ), 2003, 2005 и 2008г.); на второй международной научно-технической конференции «Энергетика. Экология. Энергосбережение. Транспорт» (г. Тобольск, 2004 г.); на международном конгрессе «IFAC WS ESC'06. ENERGY SAVING CONTROL IN PLANTS AND BUILDINGS» (г. Bansko, Bulgaria, 2006г.); на научных семинарах ФЭН и АВТФ НГТУ (г. Новосибирск, 1997, 2001, 2003-2008 г.); на научных семинарах кафедры АСУ ТП МЭИ (ТУ) (г. Москва, 2002 и 2008 г.); на научных семинарах и Секции Ученого совета ИСЭМ СО РАН (г. Иркутск, 2002, 2006 и 2008 г.) и получили положительную оценку.

Личный вклад соискателя. Автору принадлежат формулировки и обоснование цели работы, выбор объектов исследования, постановки задач, методология и структурирование системы и выделение ее диагностических элементов, разработка моделей и алгоритмов, организация натурных экспериментов и анализ полученных результатов. Практически все эксперименты выполнены также при его личном участии.

Публикации. Результаты диссертационной работы опубликованы в 46 научных работах, в том числе: в 3-х учебно-методических пособиях, 23 докладах - на Международных научных конференциях, симпозиумах и конгрессах, и 9 статьях - в журналах, рекомендуемых ВАК РФ для опубликования научных результатов диссертаций на соискание ученой степени доктора наук. Отдельные результаты отражены в зарегистрированных в ВНИТЦ отчетах по НИР. В автореферате приведен список из 37 наиболее значимых работ по теме диссертации.

Структура и объем работы. Диссертация состоит из введения, шести глав и заключения; содержит 393 страницы машинописного текста и 4 приложения на 110 страницах; работа иллюстрирована 103 рисунками; содержит 33 таблицы; список литературы на 33 страницах, включающий 380 наименований. В 4-х приложениях приведены отдельные результаты практической реализации разработанных методов и методик, и Акты о внедрении работы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность диссертационной работы, сформулированы цели, задачи, объекты и предмет исследования. Обозначено, в чем состоит научная новизна и прикладная значимость полученных в работе результатов, приведены сведения об апробации работы. Описана структура диссертации и сформулированы основные положения, выносимые на защиту.

В первой главе разработана и предложена концепция «мягкого регулирования» технического обслуживания турбоэнергоустановок ТЭС, с учетом «времени жизни» в эксплуатации (рис. 1) и отработке (рис. 2). Новая концепция технического обслуживания и ее методология базируются на следующих принципах:

- системности;

- мягкого регулирования;

- комплексности;

- прецессии (предшествование отказа).

Действие системного фактора, при котором система, как целое, устанавливает заданные требования своим компонентам, а сами требования предъявляются с позиции достижения целевой функции - увеличение времени функционирования турбоэнергоустановки, составляет основу цели диссертационной работы.

Принцип «мягкого регулирования», внедряемый автором в теплоэнергетику и методы теории искусственного интеллекта, позволяют моделировать процесс изменения ресурса турбоустановки на основе получаемых знаний истинного состояния критических элементов агрегата и, соответственно, идентифицировать его в темпе on-line как непрерывный процесс, протекающий параллельно эксплуатации. “Мягкие” способы управления предполагают ускоренные приближенные расчеты, ориентированные на синтез законов управления объектами, для которых показатели качества и точности управления поддерживаются в заданном интервале. Непрерывная идентификация, проводимая в темпе процесса, будет обеспечивать адаптацию модели или параметров турбоустановки. Темпы развития механизма-турбоустановки на каждом этапе эксплуатации определяются темпами развития его элементов. Если развиваются только отдельные элементы, то темпы замедляются и дальше начинается развитие общей деградации, т.е. утрата всем механизмом его первоначальных функций и, в итоге, утилизация, рис. 1. Развитие и отмирание, до утилизации, особенно характерны для тепловых машин, как механизмов, перерабатывающих тепловую форму энергии в механическую. Это хорошо прослеживается по изменению КПД турбоустановки за время эксплуатации.

Автором использован новый подход к представлению турбоустановки в виде комплексного механизма. Работа такого механизма моделируется в разрезе четырех информационных полей состояния: колебаний, температур, режимов и времени. В этих полях на пересечениях и определяются диагностические состояния агрегата.

В результате такого подхода, зарождающийся или развивающийся отказ в работе элементов или узлов турбоустановки представляется как явление прецессии, что позволяет распознавать весь процесс возникновения и развития дефекта до его критического значения.

Механизм (турбоустановка) рассматривается как неизолированная, открытая, техническая система , (1), которая характеризуется: входом , выходом , внешней средой и внутренней структурой . Такой механизм включает: полную информацию о состоянии , состояние объекта , его неопределенности , работоспособности или , признаки состояния , неисправности , структурные параметры , распознающие параметры , параметры сопутствующих процессов , нечеткие отношения (). Изменение состояния такой технической системы происходит во времени , рис. 3.

Для решения этой задачи системное уравнение состояния турбоэнергоустановки представлено в виде множества элементов динамической системы (1), составленное из пятнадцати определений (компонент) турбоустановки как комплексного механизма (согласно его структуре):

(1)

Рис. 1. Концепция «мягкого регулирования» энергоустановки ТЭС, с учетом ее «времени жизни» в эксплуатации и отработке

В этой связи уже можно анализировать два основных состояния механизма - как объекта эксплуатации (применения) и как объекта производства (изготовления). Механизм в этих состояниях рассматривается как часть системы более высокого порядка.

Рис. 2. Зоны управления эффективной работы механизма по его состоянию

Рис. 3. Интерпретация структуры механизма системы

Здесь: - время, - входы, - выходы, - внешняя среда (энергопотребитель, энергосистема, природная среда), - техническое состояние объекта, - информация (множество измерений) об объекте, - признаки состояния объекта, - неисправности состояния объекта, - множество решений о состоянии механизма, - эффективности (работоспособность) агрегата, - значения операторов формирования состояния, - оператор обработки исходных данных () - наблюдений и обработки данных, - оператор преобразования данных () - первичного и вторичного преобразований, - функциональная связь в уравнении , - функциональная связь в уравнении , - моменты времени на входе и выходе из объекта.

Для эффективности такого анализа распределение работоспособности по уровням компонент системы выполнено в замкнутом цикле. Это способствует ускорению принятия решения при обслуживании выделенных для анализа отдельных частей системы, рис. 1. Основной задачей анализа системы является её оптимизация, т.е. приведение в наиболее оптимальное состояние, в соответствии с поставленной целевой функцией, критерием оптимальности и ограничений.

В результате, выделяются как минимум две задачи оптимизации системы:

1) выбор оптимального варианта из возможных допустимых состояний системы при заданных ограничениях и цели;

2) выбор экономически наивыгоднейшего направления изменения (поведения) функционирования системы.

Первая задача решается для статической системы, вторая - для динамической. При этом обязательно выполнение сравнения состояния системы (1) с критерием (или критериями) оптимальности её состояния с учетом заданных ограничений. Этой цели служит установление обратной связи между выходными параметрами системы (1) и критерием её оптимальности . Для такого сложного и многофункционального механизма, как турбоустановка, может быть несколько критериев оптимальности, поэтому возможно образование не одного, а нескольких контуров обратной связи. Механизм, как элемент подсистемы - «технологический процесс», находится во взаимосвязи с элементами структуры этой системы, ее механизмами (узлами). Определив темп снижения (относительно среднего уровня) технико-экономического состояния узлов механизма, можно устанавливать эффективные сроки службы турбоустановки, прогнозировать длительность межремонтных периодов и время экономически необходимого вывода в ремонт. При прогнозировании технико-экономического уровня механизма анализ его поведения, в конкретных условиях эксплуатации, позволяет выделить: наиболее существенные (информативные), постоянные и переменные во времени параметры; сформировать характеристики прогнозного фона (сферы эксплуатации) для решения второй задачи. Представлена классификация методов идентификации для построения моделей турбоэнергоустановок. Выполнен обзор основных работ по использованию методов идентификации, включая: классические методы, модели малых порядков, функции штрафа, фильтры Калмана, метод наименьших квадратов, регрессионные модели - применительно к энергетическим агрегатам ТЭС. Показано, что основной проблемой идентификации, в каждом случае, является проблема построения математической модели функционирующего агрегата по априорной и экспериментально-диагностической информации, особенно с учетом ее неопределенности и нечеткости. Встраиваемый в контур управления идентификатор определяет и последовательно корректирует математическую модель агрегата, приводя ее к условиям нормативного состояния. Предложен подход, позволяющий определить место неисправности в турбоустановке с точностью до некоторого фрагмента ее модели при условии, что в процессе диагностического эксперимента определяются отклонения объекта от его эталона (модели эталонного объекта - турбоустановки). Пусть диагностируемый объект описан уравнением

(2)

где - вектор управлений, “” - - мерное евклидово пространство.

Представим (2) в виде совокупности взаимосвязанных фрагментов , , как некоторую часть модели объекта:

, (3)

где - дифференцируемая функция, определяющая взаимосвязь фрагментов , , - модель фрагмента .

Предположим, далее, что неисправности приводят к изменению модели одного из фрагментов , . Например, в результате неисправностей фрагмент описывается некоторой произвольной функцией . Такой фрагмент будем называть неисправным фрагментом по величине его веса -. Пусть, при этом, неисправный объект описывается уравнением

, (4)

.

Тогда, располагая моделью исправного объекта (3), переменными , можно определить неисправный фрагмент. Неисправный фрагмент определяется последовательной проверкой гипотез

,. (5)

Введем в рассмотрение обучающую и проверочную последовательности: , где - выходной и входной сигналы объекта при - м измерении; - некоторые множества натуральных чисел, причем .

Процедуры проверки гипотез состоят из двух этапов:

1) из условия минимума некоторой меры близости объекта (3) и модели (5). На последовательности определяется оценка функции , описывающей фрагмент , который предполагается неисправным;

2) на последовательности проверяется адекватность полученной модели диагностируемому объекту.

Гипотеза принимается, если модель, полученная на , адекватна объекту на . При этом соответствующий фрагмент считается неисправным.

Выполнен анализ источников информации (классификация четкой и нечеткой информации), получаемых при технической диагностике турбоустановок ТЭС. Установлены причины и выполнено оценивание возникающей неопределенности информации, влияния ее на решение задач идентификации, планирования, прогнозирования и управления. Для контроля функционирования турбоустановка представлена в виде механизма с нечеткими состояниями, рис. 3. В качестве диагностических признаков впервые применены управляющие правила функционирования механизма, а также эвристические знания и опыт экспертов. Постановка задачи оценивания технического состояния и принятия решений выполнена нечеткими уравнениями в отношениях. Для этого формализованы в терминах нечетких множеств априорные и апостериорные данные, получаемые при технической диагностике на ТЭС. Решение задачи выполняется с помощью разработанного программно-диагностического комплекса SKAIS. Например, в результате предварительного анализа получено некоторое множество классов технического состояния объекта контроля

, , (6)

отображаемое в виде нечеткого множества с соответствующими функциями принадлежности :

. (7)

Тогда состояние объекта контроля диагностируемого механизма представляется декартовым произведением пространств входа и выхода

, (8)

где - множество входных значений параметров в объект ; - множество выходных значений параметров из объекта ; - параметры состояния объекта. При наличии неопределенности в знаниях об объекте его модель отобразим нечетким уравнением в отношениях вида:

, (9)

где - нечеткое множество входа, (10)

- нечеткое множество выхода, (11)

(заданные в форме лингвистических переменных с мощностью множеств, лингвистических переменных с кардинальной мощностью множеств (размерностью системы) , , - мощность множеств);

- нечеткие подмножества включены в четкие подмножества базовых множеств ; - нечеткие множества, конечные входному и выходному пространствам объекта моделирования; - элементы терм-множеств лингвистических переменных; , - соответствующие функции принадлежности; - символ максиминной композиции Заде Л.; - нечеткое отношение в виде управляющего правила

“” (12)

выраженного посредством матрицы нечеткого отношения с элементами

, (13)

где «» - операция объединения одноточечных множеств и ;

- вариант импликации; - символ логического минимума. На языке функций принадлежности уравнение (13) имеет вид

. (14)

Информацию о состоянии объекта контроля будем получать с помощью информационно-измерительной системы, в составе ПК SKAIS, представляемую в виде операторов измерений и преобразования данных. При аппроксимации неопределенности функционирования объекта нечетким уравнением в отношениях в качестве диагностических признаков принимаем множество управляющих правил

, (15)

представленных в форме эталонных матриц нечетких отношений

, (16)

и являющихся параметрами модели (в общем случае, так как отображение не является взаимно однозначным, ). Множества классов технических состояний и диагностических признаков находятся между собой в определенном отношении

(17)

то есть, каждое техническое состояние объекта отображается в соответствующие реализации диагностических признаков. Такое отношение далее формализуется в виде соответствующей матрицы отношений. Принимаем полученное отношение нечетким и представляем его матрицей нечетких отношений с элементами, идентифицируемыми по знаниям экспертов. Тогда множество диагностических признаков также будет нечетким

(18)

Здесь: операторы формирования нечеткого множества , определяемые в виде процедуры вычисления функций принадлежности

; (19)

- расстояние между априорно заданными значениями диагностических

признаков и их оценками . В качестве показателя эффективности, задачи оценивания технического состояния, выбираем целевую функцию

, (20)

где - обобщенная функция принадлежности го технического состояния класса по обобщенному (комплексному) параметру (мощность, КПД-нетто, удельный расход тепла на отпущенный кВтчас и т.д.); - априорная функция принадлежности; - апостериорная функция принадлежности - го технического состояния, полученная по результатам измерений путем решения уравнения, обратного (18). В качестве критерия максимальной эффективности принимаем функцию:

. (21)

Итак, поставлена и решается следующая цель: на основе априорной информации о возможных технических состояниях турбоустановки оценить, в соответствии с заданными критериями:

1) действительное техническое состояние механизма и его возможности продления сроков эксплуатации;

2) межремонтные периоды, с учетом риска принимаемого решения и вероятных ограничений при их количества за все время эксплуатации.

Определены исходные данные для решения экстремальной задачи оценивания технического состояния. Решение задачи оценивания состояния представляется, согласно целевой функции (21), в виде:

, (22)

которое выполняется по алгоритму модели из модуля OPTIMIZATOR ПК . Составлены управляющие правила, отражающие допускаемый диапазон изменения параметров входа и выхода контролируемого объекта. Получены для базы знаний продукционные правила (400 правил) вида:

. (23)

Такое условие налагает определенные требования на организацию процедуры измерения параметров системы, по которым контрольные измерения для диагностики состояния следует выполнять в области определения крайних термов лингвистических переменных, как можно ближе к краям диапазонов регулирования (на краях интервалов энергетической характеристики).

Разработан (и применялся в исследовательском варианте) экспертно-диагностический комплекс SKAIS, как совокупность функционально и информационно связанных между собой подсистем задач и программ:

· обработки и анализа информации (четкой и нечеткой), определение неопределенности при техническом обслуживании и эксплуатации;

· распознавания неисправностей и диагноза состояния турбоустановки;

· оптимизации (четкой и нечеткой) состояния;

· анализа состояния, оценки риска эксплуатации и принятия решений;

· накопления в базе знаний информации о состоянии турбоустановки в виде продукционных правил;

· подготовки рекомендаций для «мягкого» управления турбоустановкой (управление, учитывающее фактическое состояние).

Во второй главе поставлены задачи идентификации технического состояния турбоустановки и выполнена оценка информации об изменении работоспособности турбоустановки за “время жизни” механизма. Впервые применены эвристическая информация (от экспертов) и неопределенности измеренных параметров, полученные в диагностических экспериментах. Для получения нечеткой информации решена задача формализации диагностического эксперимента с помощью функционально-структурной модели диагностики энергоустановки ТЭС (рис. 4), как основы методологии построения интеллектуальной системы контроля и анализа турбоустановок.

Пусть система измерений организована правильно. Тогда контролируемой ею объекту (здесь это турбоустановка, т.е., представляющий ее механизм) сопоставим некоторую функцию обобщенного аргумента (интервалы состояний, времени, пространства, физические параметры и т.д.), заключающую в себе информацию о данном объекте. В процессе диагностического эксперимента необходимо извлечь исходную информацию для получения действительной функции . Эту процедуру, на уровне понятия «черного ящика», назовем «эпизодом заглянуть в черный ящик». Пусть

, (24)

где - признаковое пространство. Предположим далее, что имеется эталонная (базовая или нормативная) функция состояния данного объекта (турбоустановки):

, (25)

где - эталонная функция.

Рис. 4. Функционально-структурная модель диагностики энергоустановки ТЭС

Введем в систему определений механизма , (1), некоторый оператор такой, что

. (26)

При сравнении функций состояния и (эталонная и действительная (близкая, похожая) функции), представим их «близкими» в . Далее, по тексту, будем использовать слово «похожесть». Критерий близости (похожести) при сравнении функций выбирается экспертом - диагностом, исходя из конкретных условий решаемой задачи с помощью программы из комплекса . Такое условие характерно для решения задач диагностики турбоустановок ТЭС. Если ввести в определенную метрику, то тогда можно с помощью этой меры определить близость по состоянию (похожесть) как расстояние между элементами функций и агрегата в признаковом пространстве , т.е. как величину

, (27)

где - критерий близости, или похожести (расстояния, в интервале от 0 до 1.0).

В результате, математический смысл операции измерения будет заключаться в определении оператора удовлетворяющего неравенству

, (28)

где - величина ошибки сравнения по похожести функций.

В частном случае, если «расстояние» определено как максимум модуля разности между и , получим

. (29)

Так как любая измерительная система должна быть конечной, то оператор будет определяться конечным числом характеристик, являющихся функционалами от и . В результате, измерение , в сравнении с , будет сводиться к получению некоторой совокупности чисел , определяющих с точностью по критерию близости . В представленной таким образом формализации оператор будет выражать необходимую совокупность действий, которые нужно выполнять для установления взаимно - однозначного соответствия между измеряемой функциональной величиной и эталонной . Однако экспериментатор, или эксперт-диагност, имеют дело не с , а с некоторой промежуточной величиной , являющейся результатом взаимодействия исследуемого состояния агрегата и измерительными приборами. Ввиду этого разделим оператор формализации информации на два последовательных оператора, отображающих основные характеристики проводимого диагностического эксперимента: наблюдение и обработку данных, т.е. . Сигнал , получаемый на выходе первичного преобразователя (датчика), является результатом наблюдения. Оператор преобразования будет связывать результаты, получаемые в процессе преобразования , с измеряемой функциональной величиной соотношением

. (30)

Здесь оператор преобразования состоит из двух частей: оператора первичного и оператора вторичного преобразований данных - . Массив данных (в векторной форме) поступает на обработку в некоторое устройство, вычисляющее оператор из функционального уравнения по специальной программе из комплекса SKAIS:

. (31)

Так как является оператором первичного преобразования, что считается условно известным, а измерительная система тарирована (т.е. проверена) и выполняет измерения достоверно, не отклоняясь от заданной погрешности, то задача измерения будет сводиться к определению оператора вторичного преобразования и последующему решению обратной задачи следующего вида:

, (32)

где - нечеткое подмножество множества сигналов (промежуточной величины) результата измерений . Анализ информации, получаемой в диагностических экспериментах, а также в процессе контроля и оценивания состояния турбоустановок, и получении окончательного диагноза, выполняется в следующей постановке, (рис. 5).

Рис. 5. Анализ обработки информации с помощью системы распознавания образов для заданного интервала наблюдения за работой турбоустановки

Здесь представлен тый интервал доверия на нагрузочной характеристике турбоэнергоустановки в ее информационном пространстве: вектор наблюдаемых параметров состояния и оценок суждений экспертов; вектор параметров предельных состояний работы турбоустановки; 1,2 - границы изолированных областей; 2 - изолированная внутри интервала область результатов измерений; 3 - зоны неустойчивых подобластей предельных состояний агрегата на рассматриваемом интервале нагрузочной характеристики; 1-7, 2-8 - границы подобластей предельных состояний агрегата; 4 - точки пространства состояний, к которым сводятся все численные решения задачи; 5 - точки наблюдения; 6 - гиперкривая регрессии; 9 - области неопределенности информации; 10 - нечеткие области экспертной информации; [min ч max] - параметры экспериментального интервала доверия на интервале наблюдения нагрузочной характеристики агрегата и экспертные данные.

Пусть техническое состояние объекта контроля и диагностики определяется значениями координат вектора параметров , размерность которого , характеризует объем контроля турбоустановки. На области определения работоспособности или параметров и признаков заданы:

- априорная плотность вероятности этих параметров

, (33)

- область работоспособности в виде ограничений на показатели (или критерий достигаемой цели ) качества работы объекта контроля

, (34)

- условная плотность работоспособного состояния

, (35)

- условная плотность частично работоспособного состояния

, (36)

где «» - обозначает операцию объединения одноточечных нечетких множеств ; «» - нечеткость соответствующих параметров; - степень принадлежности нечеткому множеству .

В работе применена допусковая методика контроля и диагностики технического состояния турбоустановки, т.е. (область работоспособности) аппроксимируется - мерным многогранником , грани которого соответствуют независимым (или частично зависимым) допускам . Условная плотность определяется аналогично (36), где, вместо , используется . Размеры допусков получаются в результате решения задачи минимизации ошибок первого и второго рода (по критериям Неймана - Пирсона и т.д.). Далее используются вероятности ложного отказа и вероятности не обнаруженного отказа . Точность определения диагностических признаков и оценивания состояния турбоустановок зависит от точности и количества измеряемых параметров и чувствительности к ним модели. Для этого решена задача анализа влияния погрешностей измерений на результаты расчета и основанного на них диагноза, т.е. задача нахождения связи между абсолютными погрешностями выходной информации и - входной информации по принципу “равных влияний и их балансу”. По этому алгоритму производится выравнивание погрешностей информации в уравнении баланса “вход - выход объекта”. Это так называемый «принцип равных влияний». Суть его заключается в том, что вклад каждого слагаемого в правой части формулы,

, (37)

в общую сумму принят равнозначным. Из этого условия следует равенство

, где . (38)

Одной из проблем является необходимость уравнивания различных физических параметров и их погрешностей, имеющих различные веса влияния на значение итогового выходного параметра (мощность, расход, к.п.д., ресурс). Для этого в работе используется вариант метода наименьших квадратов, который учитывает погрешности функции и погрешности её аргументов, выполняя их минимизацию. Но этот метод хорошо работает только в стационарных режимах турбоустановки. В нестационарных, в резкопеременных режимах, параметры и их погрешности начинают «плыть» (рис. 5). Поэтому в результаты измерений параметров вводятся весовые согласующие коэффициенты вида . Весовые коэффициенты выбираются экспертом-диагностом, исходя из условия пропорциональности влияния каждого слагаемого в уравнении баланса (37). В результате возникает задача минимизации суммы относительных погрешностей, которая имеет вид

...

Подобные документы

  • Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.

    реферат [1,4 M], добавлен 19.06.2008

  • Моделирование непрерывной системы контроля на основе матричной модели объекта наблюдения. Нахождение передаточной функции формирующего фильтра входного процесса. Построение графика зависимости координаты и скорости от времени, фазовой траектории системы.

    курсовая работа [1,5 M], добавлен 25.12.2013

  • Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.

    курсовая работа [863,4 K], добавлен 21.06.2015

  • Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.

    курсовая работа [565,7 K], добавлен 08.03.2016

  • Операторы преобразования переменных, классы, способы построения и особенности структурных моделей систем управления. Линейные и нелинейные модели и характеристики систем управления, модели вход-выход, построение их временных и частотных характеристик.

    учебное пособие [509,3 K], добавлен 23.12.2009

  • Построение многофакторной корреляционно-регрессионной модели доходности предприятия: оценка параметров функции регрессии, анализ факторов на управляемость, экономическая интерпретация модели. Прогнозирование доходности на основе временных рядов.

    дипломная работа [5,1 M], добавлен 28.06.2011

  • Обзор адаптивных методов прогнозирования. Построение модели Брауна. Применение методов прогнозирования на примере СПК колхоза "Новоалексеевский" в рамках модели авторегрессии и проинтегрированного скользящего среднего, предложенной Боксом и Дженкинсом.

    дипломная работа [9,0 M], добавлен 28.06.2011

  • Основные модели естествознания, подходы к исследованию явлений природы, её фундаментальных законов на основе математического анализа. Динамические системы, автономные дифференциальные уравнения, интегро-дифференциальные уравнения, законы термодинамики.

    курс лекций [1,1 M], добавлен 02.03.2010

  • Обзор применения аппарата разностных уравнений в экономической сфере. Построение моделей динамики выпуска продукции фирмы на основе линейных разностных уравнений второго порядка. Анализ модели рынка с запаздыванием сбыта, динамической модели Леонтьева.

    практическая работа [129,1 K], добавлен 11.01.2012

  • Синтез оптимального управления при осуществлении разворота. Разработка математической модели беспилотных летательных аппаратов. Кинематические уравнения движения центра масс. Разработка алгоритма оптимального управления, результаты моделирования.

    курсовая работа [775,3 K], добавлен 16.07.2015

  • Составление гамильтониан Н с учетом необходимых условий оптимальности для задачи Майера. Определение оптимального управления из условия максимизации. Получение конической системы уравнений и ее разрешение. Анализ необходимых условий оптимальности.

    курсовая работа [113,1 K], добавлен 13.09.2010

  • Вводные понятия. Классификация моделей. Классификация объектов (систем) по их способности использовать информацию. Этапы создания модели. Понятие о жизненном цикле систем. Модели прогнозирования.

    реферат [36,6 K], добавлен 13.12.2003

  • Теоретико-числовая база построения СОК. Теорема о делении с остатком. Алгоритм Евклида. Китайская теорема об остатках и её роль в представлении чисел в СОК. Модели модулярного представления и параллельной обработки информации. Модульные операции.

    дипломная работа [678,3 K], добавлен 24.02.2010

  • Проектирование математической модели. Описание игры в крестики-нолики. Модель логической игры на основе булевой алгебры. Цифровые электронные устройства и разработка их математической модели. Игровой пульт, игровой контроллер, строка игрового поля.

    курсовая работа [128,6 K], добавлен 28.06.2011

  • Понятие, критерии и порядок формирования ценовой политики в гостиничном бизнесе, факторы, влияющие на данный процесс. Построение многофакторной модели ценообразования в гостинице на основе статистических наблюдений данных процессов в заведениях Москвы.

    контрольная работа [427,0 K], добавлен 21.08.2008

  • Сущность математического моделирования. Аналитические и имитационные математические модели. Геометрический, кинематический и силовой анализы механизмов подъемно-навесных устройств. Расчет на устойчивость мобильного сельскохозяйственного агрегата.

    курсовая работа [636,8 K], добавлен 18.12.2015

  • Схема блоков модели Карааслана, система дифференциальных уравнений, методы решения. Блоки и биохимические законы системы Солодянникова, переход между фазами. Моделирование патологий, графики экспериментов. Построение комплексной модели гемодинамики.

    дипломная работа [4,1 M], добавлен 24.09.2012

  • Наименование разрабатываемой модели, основание для разработки. Состав и параметры аппаратного обеспечения системы. Выбор и обоснование средств реализации. Построение, расчет, разбиение модели на конечные элементы. Графическое представление решения.

    курсовая работа [674,0 K], добавлен 30.09.2010

  • Задачи оптимального управления системами обыкновенных дифференциальных уравнений. Системы уравнений, определяющие дифференциальную связь между состоянием и управлением. Решение задачи о прилунении космического корабля при помощи дискретных методов.

    курсовая работа [188,9 K], добавлен 25.01.2014

  • Предназначена библиотеки "simplex" для оптимизации линейных систем с использованием симплексного алгоритма. Построение экономико-математической модели формирования плана производства. Основные виды транспортных задач, пример и способы ее решения.

    курсовая работа [477,9 K], добавлен 12.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.