Групповой анализ линейных и квазилинейных дифференциальных уравнений
Решение задачи групповой классификации систем линейных дифференциальных уравнений первого порядка с двумя неизвестными функциями двух переменных. Групповая классификация систем дифференциальных уравнений основных подмоделей уравнений газовой динамики.
Рубрика | Математика |
Вид | автореферат |
Язык | русский |
Дата добавления | 16.02.2018 |
Размер файла | 182,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
25. Прудников В.Ю., Чиркунов Ю.А. Законы сохранения для уравнений гидродинамики и газовой динамики // Международный семинар «Современный групповой анализ». Уфа. 1991. С. 28-29.
26. Чиркунов Ю.А. Законы сохранения для уравнений безвихревого движения газа // Актуальные проблемы прикл. математики и механики. Тезисы докладов IV Всероссийской конференции, посвященной памяти академика А. Ф. Сидорова. Абрау - Дюрсо. ИММ УрО РАН (Екатеринбург), ЮГИНФО ЮФУ (Ростов-на-Дону). 2008. С. 72.
27. Чиркунов Ю.А. О проблеме линейной автономности операторов, допускаемых системой линейных дифференциальных уравнений // Международная конференция «Дифференциальные уравнения. Функциональные пространства. Теория приближений», посвященная 100-летию со дня рождения Сергея Львовича Соболева. Новосибирск: Институт математики им. С.Л.Соболева СО РАН. 2008. С. 231.
28. Чиркунов Ю.А. О свойствах симметрий и законов сохранения для квазилинейных дифференциальных уравнений второго порядка // Всероссийская конференция «Новые математические модели в механике сплошных сред: построение и изучение», приуроченная к 90-летию академика Л. В. Овсянникова. Новосибирск: Институт гидродинамики им. М. А. Лаврентьева СО РАН. 2009. С. 155.
29. Чиркунов Ю.А. Линейная автономность основной алгебры Ли системы линейных дифференциальных уравнений // Всероссийская конференция «Новые математические модели в механике сплошных сред: построение и изучение», приуроченная к 90-летию академика Л. В. Овсянникова. Новосибирск: Институт гидродинамики им. М. А. Лаврентьева СО РАН. 2009. С. 154.
30. Чиркунов Ю.А. Симметрии и законы сохранения для квазилинейных дифференциальных уравнений второго порядка // Международная научная конференция «Современные проблемы вычислительной математики и математической физики», посвященная памяти академика А. А. Самарского в связи с 90-летием со дня его рождения. М.: МГУ им. М. В. Ломоносова, ИПМ РАН, ИММ РАН. 2009. С. 277-278.
31. Чиркунов Ю.А. Законы сохранения для уравнений газовой динамики //Всероссийская конференция «Математика в приложениях», приуроченная к 80-летию академика С. К. Годунова. Новосибирск: Институт математики им. С. Л. Соболева СО РАН. 2009. С. 269-270.
32. Chirkunov Yu.A. On the structure of point transformations, admitted by system of linear differential equations // International Conference “Modern Group Analysis (MOGRAN-13)”. Ufa, Russia. 2009. P. 36.
Размещено на Allbest.ru
...Подобные документы
Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа [395,4 K], добавлен 10.06.2010Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа [4,8 M], добавлен 29.04.2013Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [791,0 K], добавлен 12.06.2010Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа [380,9 K], добавлен 23.07.2012Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа [355,9 K], добавлен 28.02.2011Основные понятия теории погрешностей. Приближенное решение некоторых алгебраических трансцендентных уравнений. Приближенное решение систем линейных уравнений. Интерполирование функций и вычисление определенных интегралов, дифференциальных уравнений.
методичка [899,4 K], добавлен 01.12.2009Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.
реферат [129,3 K], добавлен 15.08.2009Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция [24,2 K], добавлен 14.12.2010Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.
презентация [642,7 K], добавлен 31.10.2016Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи.
курсовая работа [335,8 K], добавлен 31.05.2016Вычисление общего решения дифференциальных уравнений первого порядка с разделяющимися переменными. Расчет определенного интеграла с точностью до 0,001. Определение вероятности заданных событий, математического ожидания и дисперсии случайной величины.
контрольная работа [543,4 K], добавлен 21.10.2012Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.
реферат [532,7 K], добавлен 10.11.2009Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.
презентация [316,5 K], добавлен 14.11.2014Рассмотрение теории дифференциальных уравнений. Выделение классов уравнений с систем, решения которых не имеют подвижных критических особых точек. Установление достаточности найденных условий путем сравнения с классическими системами типа Пенлеве.
курсовая работа [137,0 K], добавлен 01.06.2015Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.
курсовая работа [78,1 K], добавлен 12.06.2010Механическая интерпретация нормальной системы дифференциальных уравнений первого порядка. Свойства решений автономных систем. Предельное поведение траекторий, циклы. Функция последования и направления их исследования, оценка характерных параметров.
курсовая работа [2,0 M], добавлен 24.09.2013Приведение к системе уравнений первого порядка. Разностное представление систем дифференциальных уравнений. Сеточные методы для нестационарных задач. Особенность краевых задач второго порядка. Разностные схемы для уравнений в частных производных.
реферат [308,6 K], добавлен 13.08.2009Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.
курсовая работа [1,1 M], добавлен 10.04.2014Приближенные числа и действия над ними. Решение систем линейных алгебраических уравнений. Интерполирование и экстраполирование функций. Численное решение обыкновенных дифференциальных уравнений. Отделение корня уравнения. Поиск погрешности результата.
контрольная работа [604,7 K], добавлен 18.10.2012