Некоторые задачи перечисления помеченных связных графов
Исследование помеченных связных графов с заданным числом вершин и точек сочленения. Выведение формулы для энумератора разреженных гомеоморфно несводимых графов с заданным цикломатическим числом. Определение их асимптотики и интегральных представлений.
Рубрика | Математика |
Предмет | Дискретная математика |
Вид | автореферат |
Язык | русский |
Прислал(а) | Аля |
Дата добавления | 02.03.2018 |
Размер файла | 148,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.
лабораторная работа [85,5 K], добавлен 09.01.2009Основополагающие понятия теории графов. Определение эквивалентности, порождаемое группой подстановок, и доказательство леммы Бернсайда о числе ее классов. Понятие перечня конфигурации и доказательство теоремы Пойа. Решение задачи о перечислении графов.
курсовая работа [649,2 K], добавлен 18.01.2014Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.
курсовая работа [109,1 K], добавлен 22.01.2016Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.
дипломная работа [145,5 K], добавлен 19.07.2011Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.
дипломная работа [272,5 K], добавлен 05.06.2014Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.
презентация [150,3 K], добавлен 16.01.2015Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.
презентация [430,0 K], добавлен 19.11.2013Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.
курсовая работа [1,8 M], добавлен 18.01.2013Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.
курсовая работа [713,8 K], добавлен 16.05.2016Стационарное распределение вероятностей. Построение математических моделей, графов переходов. Получение уравнения равновесия систем массового обслуживания с различным числом приборов, требованиями различных типов и ограниченными очередями на приборах.
дипломная работа [2,4 M], добавлен 23.12.2012Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат [368,2 K], добавлен 13.06.2011История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.
курсовая работа [636,2 K], добавлен 20.12.2015Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.
реферат [81,0 K], добавлен 23.11.2008Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа [625,4 K], добавлен 30.09.2014Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.
курсовая работа [1006,8 K], добавлен 23.12.2007Сущность и основные понятия теории графов, примеры и сферы ее использования. Формирование следствий из данных теорий и примеры их приложений. Методы разрешения задачи о кратчайшем пути, о нахождении максимального потока. Графическое изображение задачи.
курсовая работа [577,1 K], добавлен 14.11.2009Математическое описание системы автоматического управления с помощью графов. Составление графа и его преобразование, избавление от дифференциалов. Оптимизации ориентированных и неориентированных графов, составления матриц смежности и инцидентности.
лабораторная работа [42,2 K], добавлен 11.03.2012Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.
контрольная работа [466,3 K], добавлен 11.03.2011Рассмотрение понятия и видов графов как совокупности непустого конечного множества элементов; условия их связанности. Доказательства существования замкнутых Эйлеровой, Гамильнотовой и бесконечной цепей. Ознакомление с элементарными свойствами деревьев.
курсовая работа [1,4 M], добавлен 10.02.2012Разработка и анализ топологической модели электронной схемы для полного диапазона частот. Определение передаточной схемной функции методом эквивалентных схем в матричной форме, а также методом сигнальных графов, используя сигнальный граф Мэзона.
контрольная работа [469,9 K], добавлен 11.04.2016