Свойства биномиальных коэффициентов

Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.

Рубрика Математика
Вид конспект урока
Язык русский
Дата добавления 03.02.2018
Размер файла 323,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План-конспект урока

по математике: «Бином Ньютона. Свойства биномиальных коэффициентов»

Пенза 2017 год

Задачи урока:

- дидактические: познакомить с формулой бинома Ньютона, научить применять формулу бинома Ньютона при возведении в степень двучлена;
-
развивающие: способствовать развитию памяти, алгоритмического и логического мышления, внимания; развитию самостоятельных, исследовательских, рефлексивных умений, критического мышления;
- воспитательные: формировать умение правильного восприятия информации, воспитывать активность в решении познавательно-поисковых задач, продолжить воспитание чувства ответственности, самостоятельности, добросовестности).

Межпредметные связи: алгебра, физика, информатика, литература.

Методы: словесные, наглядные, практические.

Оборудование: компьютер, мультимедийный проектор, экран, презентация, карточки с теоретическим материалом, опорный конспект.

Тип урока - комбинированный;

Формы работы учащихся - фронтальная, индивидуальная.

Ход урока:

1.Организационный момент:

Сообщение темы, целей урока, практической значимости рассматриваемой темы.

2. Актуализация знаний

I. Фронтальный опрос:

1)Что изучает комбинаторика?

2)Какие виды соединений или выборок вам известны?

3) Отгадать кроссворд «Комбинаторика»

II. Устный счет:

1. 5!=….(120), А52 =…(20)., С42=….(8)

2. Сколькими способами можно разместить 5 человек на скамейке?

3. Изложение нового материала: Работа с карточками теоретического материала. Заслушивание и анализ сообщений студентов. Написание конспекта.

I) История комбинаторики (Сообщение студента)

На прошлом уроке мы познакомились с основами комбинаторики. Домашнее задание для первой творческой группы было подготовить сообщение об истории возникновения комбинаторики как науки. (Сообщение студента)

· Какие же ученые внесли вклад в развитие комбинаторики как науки?

· Одним из выдающихся умов того времени был английский ученый Исаак Ньютон. Ваше домашнее задание было подготовить сообщение об этом великом гении.

II) Исаак Ньютон- великий математик (Сообщение студента)

Вы услышали из доклада, сколько гениальных идей и открытий принадлежит великому математику Исааку Ньютону. Одним из его открытий является формула Бином Ньютона.

III) Бином Ньютона.

Именно этому открытию мы посвятим наш сегодняшний урок. Запишем тему урока. Цели нашего урока: познакомиться с формулой бинома Ньютона, научиться применять формулу бинома Ньютона при возведении в степень двучлена.

Слово бином означает «Два числа» В математике биномом называют «формулу для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных». Давайте вслед за Ньютоном попробуем ее вывести, чтобы затем применять.

Вы наверняка помните (или, по крайней мере, должны помнить), формулы сокращенного умножения для квадрата и куба суммы двух слагаемых (такая сумма называется «бином», по-русски - двучлен.

Если вы забыли эти формулы, можно их получить напрямую, раскрыв скобки в очевидных равенствах

Может быть, вам приходил в голову вопрос: можно ли (без компьютера) получить формулы типа для биномов четвертой степени, пятой, десятой - какой угодно?

Давайте попробуем дойти напрямую хотя бы до пятой степени, а там, может быть, окажется «рояль в кустах» (для порядка будем размещать слагаемые в правой части по убыванию степени а, она убывает от максимума до нуля):

Теперь отдельно выпишем численные коэффициенты в правых частях формул при возведении бинома в заданную степень:

Возможно, вы уже догадались, что «рояль в кустах» - это треугольник Паскаля на предыдущей странице. Легко проверить, что выписанные на численные коэффициенты - это строчки треугольника Паскаля, начиная с третьей. Этот «усеченный треугольник», в котором не хватает первых двух строк, легко сделать полным (получить строчки при n=0 и n=1):

Окончательно получим:

Это утверждение было известно задолго до Паскаля - его знал живший в XI-XII вв. среднеазиатский математик и поэт Омар Хайям (к сожалению, его сочинение об этом до нас не дошло). Первое, дошедшее до нас описание формулы бинома Ньютона содержится в появившейся в 1265 г. книге среднеазиатского математика ат-Туси, где дана таблица чисел (биномиальных коэффициентов) до включительно.

Европейские ученые познакомились с формулой бинома Ньютона, по-видимому, через восточных математиков. Детальное изучение свойств биномиальных коэффициентов провел французский математик и философ Б. Паскаль в 1654 г. Ваше домашнее задание было подготовить сообщение о французском ученом Паскале.

IV) Блез Паскаль (Сообщение студента)

Теперь понятно, как возвести бином в любую степень n. В левой части записываем (а+b)n. А в правой части записываем сумму аn + аn-1b + … + bn , оставляя в каждом слагаемом место для коэффициента. И эти места заполняем числами из n-ой строчки треугольника Паскаля, которую, конечно, нужно заранее выписать. бином ньютон умножение квадрат

Возведение двучлена a + b в степень n может быть произведено по формуле называемой разложением бинома Ньютона:

(a + b)n = an + C1n an - 1 b + C2n an - 2 b2 +...+Ckn an - k bk +... + Cn - 1n abn - 1 + Cnnbn

где Ckn --все возможные сочетания, которые можно образовать из n элементов по k.

Пример:

(a + b)5 = a5 + C15 a4b + C25 a3b2 + C35 a2b3 + C45 ab4 + C55 b5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

Таким образом можно записать формулу для возведения двучлена в любую степень. Давайте заметим некоторые свойства у слагаемых в разложении двучлена по формуле Бинома Ньютона.

V) Свойства бинома Ньютона

· Число слагаемых на 1 больше степени бинома.

· Коэффициенты находятся по треугольнику Паскаля или равны числу сочетаний С, где n - степень двучлена , m - переменная величина, пробегающая значения от 0 до n и соответствующая степени второго выражения.

· Коэффициенты симметричны.

· Если в скобке знак минус, то знаки + и - чередуются.

· Сумма степеней каждого слагаемого равна степени бинома.

· Сумма коэффициентов разложения ( a + b) n равна 2 n .

VI) Закрепление нового материала. (Решить самостоятельно по вариантам)

Мы знакомились с вами с применением бинома Ньютона при изучении формул сокращенного умножения: Где же ещё применяется Бином Ньютона?

VII) Применение Бинома Ньютона.

В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.

Пример.

Доказать, что значение выражения , где n - натуральное число, делится на 16 без остатка.

Решение.

Представим первое слагаемое выражение как и воспользуемся формулой бинома Ньютона:

• Полученное произведение доказывает делимость исходного выражения на 16. Бином Ньютона применяется при доказательстве Теоремы Ферма, в теории бесконечных рядов и выводе формулы Ньютона-Лейбница

VIII) Что означает фразеологизм «Бином Ньютона»?

Шутливая фраза, применяется по отношению к плевому делу, простой задаче, которую некоторые ошибочно считают непосильной для выполнения или архисложной.

Возникновение фразы: из романа Михаила Булгакова (1891 - 1940 гг.) «Мастер и Маргарита» (1940 г.).

Слова Коровьева, которые решил прокомментировать разговор Воланда с буфетчиком Соковым. Буфетчик жалуется на зрителей, которые расплатились с ним фальшивыми деньгами, чем «на сто девять рублей наказали буфет».

« - Ну, конечно, это не сумма, - снисходительно сказал Воланд своему гостю, - хотя, впрочем, и она, собственно, вам не нужна. Вы когда умрете?

Тут уж буфетчик возмутился.

- Это никому не известно и никого не касается, - ответил он.

- Ну да, неизвестно, - послышался все тот же дрянной голос (Коровьева) из кабинета, - подумаешь, бином Ньютона! Умрет он через девять месяцев, в феврале будущего года, от рака печени в клинике Первого МГУ, в четвертой палате».

IX) Итоги урока. Рефлексия

Подумаешь, Бином Ньютона

Оскар Хуторянский

"Подумаешь, Бином Ньютона"

Кот промяукал Бегемот

(Он Воланда слуга покорный),

Предсказывая жизни ход.

Все это только подтверждает

Ньютона гений, но давно

Бином известен был в Китае,

Арабы знали про него.

Но обобщил Ньютон решение,

Возвёл он в степень многочлен...

Избавил нас от всех сомнений

Других же нет у нас проблем.

Скажите нам совсем без прений

Зачем нам нужен тот бином?

Комбинаторику явлений

Мы без бинома не найдём.

- Что нового вы узнали на уроке? Важна ли эта формула для математики? Трудно ли вам было усваивать новый материал?

X) Домашнее задание. Подготовка к контрольной работе.

(задание на листочках каждому студенту)

1. Из 12 членов команды нужно выбрать капитана и заместителя. Сколькими способами можно это сделать?

2.Вычислите: 4Р3+3А210-С25

3. Выпускники экономического института работают в трех различных организациях: 17 человек в банке,23- в фирме и 19-в налоговой инспекции. Найдите вероятность того, что случайно встреченный выпускник работает в банке?

4. Имеется 8 различных книг 2 из которых сборники стихов. Сколькими способами можно расставить эти книги на полке так, чтобы справочники оказались рядом?

5. Для игры в КВН нужно выбрать команду из 6 человек, Сколькими способами можно это сделать, если в команде должно быть мальчиков и девочек поровну, и в классе 12 девочек и 10 мальчиков?

6. Сколько трехзначных чисел с разными цифрами можно составить из цифр , 0,1,3,6,7,9?

7. Разложите на множители: (a-b)9 и (3x+y)10

Размещено на Allbest.ru

...

Подобные документы

  • Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

    учебное пособие [659,6 K], добавлен 07.05.2012

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Использование теоретико-числового и алгебраического метода доказательства, с наглядной геометрической верификацией, который был изобретен П. Ферма. Верификация метода бесконечных (неопределенных) спусков, который применяется для доказательства теоремы.

    научная работа [796,8 K], добавлен 11.01.2008

  • Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1

    статья [12,9 K], добавлен 07.07.2005

  • Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.

    реферат [1,6 M], добавлен 29.05.2009

  • Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа [481,0 K], добавлен 14.10.2013

  • Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация [1,9 M], добавлен 26.01.2015

  • Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.

    лабораторная работа [147,4 K], добавлен 16.11.2015

  • Попытка доказательства частного случая великой теоремы Ферма. Преобразования уравнения xn+yn=zn, позволяющие получить квадратное уравнение. Показано, что вышеназванное равенство для трех действительных разных целых положительных чисел не выполняется.

    монография [59,3 K], добавлен 27.12.2012

  • Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.

    контрольная работа [75,6 K], добавлен 06.02.2014

  • Биографии и описание деятельности великих математиков: Паскаля, Бернулли, Дезарга, Ньютона, Ферма, Декарта, Эйлера, Монжа, Фурье, Лагранжа, Виета, Лейбница. Алгебраические методы в геометрии. Аналитическая геометрия Ферма. Аналитическая геометрия Декарта.

    реферат [1,7 M], добавлен 14.01.2011

  • Определение свойств чисел и выражение соотношений между подмножествами одного множества. Арифметический треугольник Паскаля. Алгоритм вычисления биномиальных коэффициентов. Рассмотрение комбинаторных тождеств: правила симметрии и свертки Вандермонда.

    курсовая работа [471,2 K], добавлен 10.10.2011

  • Понятие возрастающей числовой последовательности. Формула бинома Ньютона. Число положительных слагаемых. Определение ограниченности последовательности чисел. Предел монотонной и ограниченной последовательностей. Показательный рост или убывание.

    презентация [87,1 K], добавлен 21.09.2013

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа [31,1 K], добавлен 18.01.2010

  • Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.

    контрольная работа [155,2 K], добавлен 02.06.2011

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

  • Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.

    реферат [13,2 K], добавлен 01.12.2010

  • Ознакомление с геометрической и алгебраической формулировками понятия равносоставленности и практическое применение ее свойств при доказательстве обратной теоремы Пифагора методами площадей и подобных треугольников и решении задач на разрезание.

    доклад [300,8 K], добавлен 21.02.2010

  • Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

    статья [35,2 K], добавлен 21.05.2009

  • Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.

    реферат [140,2 K], добавлен 27.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.