Нелинейная регрессия
Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.02.2018 |
Размер файла | 476,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
2
Содержание
Введение
1. Линейная регрессия
2. Полиномиальная регрессия
3. Нелинейная регрессия
4. Сглаживание данных
5. Предсказание зависимостей
Список используемой литературы
Введение
Нелинейная регрессия - это способ нахождения нелинейной модели взаимосвязи между зависимой переменной и набором независимых переменных.
В отличие от традиционной линейной регрессии, которая ограничена оценкой линейных моделей, нелинейная регрессия может оценивать модели с произвольными взаимосвязями между независимыми и зависимыми переменными. Она обычно возникает при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе или на высоком уровне помех. Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.
Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(хk) со случайной погрешностью ?k, распределенной, как правило, по нормальному закону. По совокупности значений yk требуется подобрать такую функцию f(xk, a0, a1, …, an), которой зависимость Y(x) отображалась бы с минимальной погрешностью. Отсюда следует условие приближения:
yk = f(xk, a0, a1, …, an) + ?k.
Функцию f(xk, a0, a1, …, an) называют регрессией величины y на величину х. Регрессионный анализ предусматривает задание вида функции
f(xk, a0, a1, …, an) и определение численных значений ее параметров a0, a1, …, an, обеспечивающих наименьшую погрешность приближения к множеству значений yk. Как правило, при регрессионном анализе погрешность приближения вычисляется методом наименьших квадратов (МНК). Для этого выполняется минимизация функции квадратов остаточных ошибок:
a0, a1, …, an) = [f(xk, a0, a1, …, an) - yk] 2.
Для определения параметров a0, a1, …, an функция остаточных ошибок дифференцируется по всем параметрам, полученные уравнения частных производных приравниваются нулю и решаются в совокупности относительно всех значений параметров. Виды регрессии обычно называются по типу аппроксимирующих функций: полиномиальная, экспоненциальная, логарифмическая.
Актуальность выбранной мною темы обусловлена тем, что для исследования экономических процессов в настоящее время всё чаще стали применяться нелинейные модели. Данная модель способствует выявлению нелинейных производственных функций, например зависимость между основными факторами производства и объёмом произведённой продукции. Также нелинейная модель может помочь при выявлении зависимости между спросом на товары и их ценами.
Цель реферата: раскрыть сущность и особенности нелинейной регрессии.
1. Линейная регрессия
Общий принцип. Простейший способ аппроксимации по МНК произвольных данных sk - с помощью полинома первой степени, т.е. функции вида y(t) = a+bt. С учетом дискретности данных по точкам tk, для функции остаточных ошибок имеем:
(a,b) = [(a+b·tk) - sk] 2.
Дифференцируем функцию остаточных ошибок по аргументам a, b, приравниваем полученные уравнения нулю и формируем 2 нормальных уравнения системы:
1. (a+b·tk) - sk a1 + btk -sk = 0,
2. ((a+b·tk) - sk) ·tk atk + btk2 - sk·tk = 0,
Решение данной системы уравнений в явной форме для К-отсчетов:
b = [Ktk·sk -tksk] / [Ktk2 - (tk) 2],
a = [sk - btk] /K.
Полученные значения коэффициентов используем в уравнении регрессии y(t) = a+bt. По аналогичной методике вычисляются коэффициенты и любых других видов регрессии, отличаясь только громоздкостью соответствующих выражений.
Реализация в Mathcad. Линейная регрессия в системе Mathcad выполняется по векторам аргумента Х и отсчетов Y функциями:
intercept(X,Y) - вычисляет параметр а, смещение линии регрессии по вертикали;
slope(X,Y) - вычисляет параметр b, угловой коэффициент линии регрессии.
Расположение отсчетов по аргументу Х произвольное. Функцией corr(X,Y) дополнительно можно вычислить коэффициент корреляции Пирсона. Чем он ближе к 1, тем точнее обрабатываемые данные соответствуют линейной зависимости.
Пример выполнения линейной регрессии приведен на рис.1.1
Рис.1.1 Линейная регрессия.
2. Полиномиальная регрессия
Одномерная полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов в Mathcad выполняется функциями:
regress(X,Y,n) - вычисляет вектор S для функции interp(…), в составе которого находятся коэффициенты ki полинома n-й степени;
interp(S,X,Y,x) - возвращает значения функции аппроксимации по координатам х.
Функция interp(…) реализует вычисления по формуле:
f(x) = k0 + k1·x1 + k2·x2 + … + kn·xn ? ki·xi.
Значения коэффициентов ki могут быть извлечены из вектора S функцией submatrix(S, 3, length(S), 0, 0).
На рис.2.1 приведен пример полиномиальной регрессии с использованием полиномов 2, 3 и 8-й степени. Степень полинома обычно устанавливают не более 4-6 с последовательным повышением степени, контролируя среднеквадратическое отклонение функции аппроксимации от фактических данных.
Нетрудно заметить, что по мере повышения степени полинома функция аппроксимации приближается к фактическим данным, а при степени полинома, равной количеству отсчетов данных минус 1, вообще превращается в функции интерполяции данных, что не соответствует задачам регрессии.
Рис.2.1 Одномерная полиномиальная регрессия.
Зональная регрессия. Функция regress по всей совокупности точек создает один аппроксимирующий полином. При больших координатных интервалах с большим количеством отсчетов и достаточно сложной динамике изменения данных рекомендуется применять последовательную локальную регрессию отрезками полиномов малых степеней. В Mathcad это выполняется отрезками полиномов второй степени функцией loess(X, Y, span), которая формирует специальный вектор S для функции interp(S,X,Y,x). Аргумент span > 0 в этой функции (порядка 0.1-2) определяет размер локальной области и подбирается с учетом характера данных и необходимой степени их сглаживания (чем больше span, тем больше степень сглаживания данных).
Рис. 2.2 Зональная регрессия полиномом второй степени.
На рис.2.2 приведен пример вычисления регрессии модельной кривой (отрезка синусоиды) в сумме с шумами. Вычисления выполнены для двух значений span с определением среднеквадратического приближения к базовой кривой. При моделировании каких-либо случайных процессов и сигналов на высоком уровне шумов по минимуму среднеквадратического приближения может определяться оптимальное значение параметра span.
3. Нелинейная регрессия
Линейное суммирование произвольных функций. В Mathcad имеется возможность выполнения регрессии с приближением к функции общего вида в виде весовой суммы функций fn(x):
f(x, Kn) = K1·f1(x) + K2·f2(x) + … + KN·fN(x),
при этом сами функции fn(x) могут быть любого, в том числе нелинейного типа. С одной стороны, это резко повышает возможности аналитического отображения функций регрессии. Но, с другой стороны, это требует от пользователя определенных навыков аппроксимации экспериментальных данных комбинациями достаточно простых функций.
Реализуется обобщенная регрессия по векторам X, Y и f функцией linfit(X,Y,f), которая вычисляет значения коэффициентов Kn. Вектор f должен содержать символьную запись функций fn(x). Координаты xk в векторе Х могут быть любыми, но расположенными в порядке возрастания значений х (с соответствующими отсчетами значений yk в векторе Y). Пример выполнения регрессии приведен на рис.3.1/ Числовые параметры функций f1-f3 подбирались по минимуму среднеквадратического отклонения.
Рис.3.1 Обобщенная регрессия.
Регрессия общего типа. Второй вид нелинейной регрессии реализуется путем подбора параметров ki к заданной функции аппроксимации с использованием функции genfit(X,Y,S,F), которая возвращает коэффициенты ki, обеспечивающие минимальную среднеквадратическую погрешность приближения функции регрессии к входным данным (векторы Х и Y координат и отсчетов). Символьное выражение функции регрессии и символьные выражения ее производных по параметрам ki записываются в вектор F. Вектор S содержит начальные значения коэффициентов ki для решения системы нелинейных уравнений итерационным методом. Пример использования метода приведен на рис.3.2.
Рис.3.2 Нелинейные регрессии.
Для простых типовых формул аппроксимации предусмотрен ряд функций регрессии, в которых параметры функций подбираются программой Mathcad самостоятельно.
К ним относятся следующие функции:
expfit(X,Y,S) - возвращает вектор, содержащий коэффициенты a, b и c экспоненциальной функции y(x) = a·exp(b·x) +c. В вектор S вводятся начальные значения коэффициентов a, b и c первого приближения. Для ориентировки по форме аппроксимационных функций и задания соответствующих начальных значений коэффициентов на рисунках слева приводится вид функций при постоянных значениях коэффициентов a и c.
lgsfit(X,Y,S) - то же, для выражения y(x) = a/(1+c·exp(b·x)).
pwrfit(X,Y,S) - то же, для выражения y(x) = a·xb+c.
sinfit(X,Y,S) - то же, для выражения y(x) = a·sin(x+b) +c. Подбирает коэффициенты для синусоидальной функции регрессии. Рисунок синусоиды общеизвестен.
logfit(X,Y) - то же, для выражения y(x) =a·ln(x+b) +c. Задания начального приближения не требуется.
medfit(X,Y) - то же, для выражения y(x) = a+b·x, т.е. для функции линейной регрессии. Задания начального приближения также не требуется. График - прямая линия.
На рис.3.3 приведен пример реализации синусоидальной регрессии модельного массива данных по базовой синусоиде в сопоставлении с зональной регрессией полиномом второй степени. Как можно видеть из сопоставления методов по среднеквадратическим приближения к базовой кривой и к исходным данным, известность функции математического ожидания для статистических данных с ее использованием в качестве базовой для функции регрессии дает возможность с более высокой точностью определять параметры регрессии в целом по всей совокупности данных, хотя при этом кривая регрессии не отражает локальных особенностей фактических отсчетов данной реализации. Это имеет место и для всех других методов с заданием функций регрессии.
Рис.3.3 Синусоидальная регрессия.
4. Сглаживание данных
Сглаживание данных, как искаженных помехами, так и статистических по своей природе, также можно считать частным случаем регрессии без определения символьной формы ее функции, а потому может выполняться более простыми методами. В Mathcad для сглаживания применяются следующие функции:
supsmooth(X,Y) - возвращает вектор сглаженных данных Y с использованием линейного сглаживания методом наименьших квадратов по k-ближайших отсчетов с адаптивным выбором значения k с учетом динамики изменения данных. Значения вектора Х должны идти в порядке возрастания.
ksmooth(X,Y,b) - вычисляет вектор сглаженных данных на основе распределения Гаусса. Параметр b задает ширину окна сглаживания и должен быть в несколько раз больше интервала между отсчетами по оси х.
medsmooth(Y,b) - вычисляет вектор сглаженных данных по методу скользящей медианы с шириной окна b, которое должно быть нечетным числом. математический регрессия полиномиальный
Сопоставление методов сглаживания приведено на рис.4.1. Как можно видеть на этом рисунке, качество сглаживания функциями supsmooth(X,Y) и ksmooth(X,Y,b) практически идентично (при соответствующем выборе параметра b). Медианный способ уступает по своим возможностям двум другим. Можно заметить также, что на концевых точках интервала задания данных качество сглаживания ухудшается, особенно в медианном способе, который вообще не может выполнять свои функции на концевых интервалах длиной b/2.
Рис.4.1 Сглаживание данных.
5. Предсказание зависимостей
Функция Mathcad predict(Y,n,K), где n - степень полинома аппроксимации вектора равномерно распределенных данных Y, позволяет вычислить вектор К точек предсказания (экстраполяции) поведения произвольного сигнала за пределами его задания (по возрастанию координат х). Предсказание тем точнее, чем более гладкую форму имеет заданный сигнал. Пример использования функции приведен на рис.5 1 для гладкой и статистически зашумленной сигнальной кривой. Степень аппроксимирующего полинома определяет глубину использования входных данных и может быть достаточно небольшой для гладких и монотонных сигналов. Ошибка прогнозирования увеличивается по мере удаления от заданных данных.
Рис.5 1. Предсказание зависимости.
Список используемой литературы
1. Дьяконов В.П. Вейвлеты. От теории к практике. - М.: СОЛОН-Р, 2002. - 448.
2. Корн Г., Корн Е. Справочник по математике для научных работников и инженеров. - М.: Наука, 1984.
3. Эконометрика Под ред.И. И. Елисеевой 2002г.
4. А. А. Цыплаков, "Некоторые эконометрические методы. Метод максимального правдоподобия в эконометрии", ЭФ НГУ, 1997.
5. Суслов В.И., Ибрагимов Н.М., Талышева Л.П., Цыплаков А. А. Эконометрия. - Новосибирск: Издательство СО РАН, 2005. - 744с.
6. В.П. Носко "Эконометрика" (Введение в регрессионный анализ временных рядов) Москва 2002.
7. Лекции "Анализ временных рядов" Г.Г. Канторовича (Высшая школа экономики, ГУ-ВШЭ) Опубликовано в "Экономическом журнале ВШЭ" Том.6 (2002), №1,2,3,4 и Том.7 (2003), №1.
Размещено на Allbest.ru
...Подобные документы
Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа [380,9 K], добавлен 05.04.2015Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.
задача [133,0 K], добавлен 21.12.2008Проверка адекватности линейной регрессии. Вычисление выборочного коэффициента корреляции. Обработка одномерной выборки методами статистического анализа. Проверка гипотезы значимости с помощью критерия Пирсона. Составление линейной эмпирической регрессии.
задача [409,0 K], добавлен 17.10.2012Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.
презентация [387,8 K], добавлен 25.05.2015Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.
курсовая работа [352,9 K], добавлен 26.01.2010Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.
курсовая работа [128,4 K], добавлен 18.11.2010Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.
контрольная работа [68,7 K], добавлен 21.09.2009Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.
презентация [100,3 K], добавлен 16.12.2014Характеристика экзогенных и эндогенных переменных. Теорема Гаусса-Маркова. Построение двухфакторного и однофакторных уравнения регрессии. Прогнозирование значения результативного признака. Оценка тесноты связи между результативным признаком и факторами.
курсовая работа [575,5 K], добавлен 19.05.2015Построение математической модели технологического процесса напыления резисторов методами полного и дробного факторного эксперимента. Составление матрицы планирования. Рандомизация и проверка воспроизводимости. Оценка коэффициентов уравнения регрессии.
курсовая работа [694,5 K], добавлен 27.12.2021Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.
лабораторная работа [22,3 K], добавлен 15.04.2014Построение линейной множественной регрессии для моделирования потребления продукта в разных географических районах. Расчет оценки дисперсии случайной составляющей. Вычисление и корректировка коэффициентов детерминации. Расчет доверительного интервала.
контрольная работа [814,0 K], добавлен 19.12.2013Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.
контрольная работа [77,6 K], добавлен 20.07.2010Преимущества и недостатки параметрических методов оценки. Процедура Роббинса-Монро, алгоритмы Литвакова и Кестена. Исследование стохастических аппроксимаций непараметрического типа. Непараметрическая оценка плотности вероятности и кривой регрессии.
реферат [470,6 K], добавлен 22.04.2014Установление корреляционных связей между признаками многомерной выборки. Статистические параметры регрессионного анализа линейных и нелинейных выборок. Нахождение функций регрессии и проверка гипотезы о значимости выборочного коэффициента корреляции.
курсовая работа [304,0 K], добавлен 02.03.2017Построение диаграммы рассеивания, полигонов, гистограмм нормированных относительных частот, эмпирических функций распределения по X и по Y. Параметры для уравнения параболической регрессии. Проверка гипотезы о нормальном распределении признака Х.
курсовая работа [511,8 K], добавлен 08.12.2013Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.
контрольная работа [547,6 K], добавлен 02.02.2012Алгебраический расчет плотности случайных величин, математических ожиданий, дисперсии и коэффициента корреляции. Распределение вероятностей одномерной случайной величины. Составление выборочных уравнений прямой регрессии, основанное на исходных данных.
задача [143,4 K], добавлен 31.01.2011Cтатистический анализ зависимости давления. Построение диаграммы рассеивания и корреляционной таблицы. Вычисление параметров для уравнений линейной и параболической регрессии, выборочных параметров. Проверка гипотезы о нормальном распределении признака.
курсовая работа [613,3 K], добавлен 24.10.2012Определение дифференциальной функции распределения f(x)=F'(x) и математического ожидания случайной величины Х. Применение локальной и интегральной теоремы Лапласа. Составление уравнения прямой линии регрессии. Определение оптимального плана перевозок.
контрольная работа [149,6 K], добавлен 12.11.2012