Математическая модель эредитарного осциллятора Ван дер Поля-Дуффинга

Исследование и характеристика специфики алгоритма нахождения численного решения исходного модельного уравнения, который основан на конечно-разностной схеме. Построение осциллограмм и фазовых траекторий для эредитарного осциллятора Ван дер Поля-Дуффинга.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 11.03.2018
Размер файла 756,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Камчатский государственный университет имени Витуса Беринга

Математическая модель эредитарного осциллятора Ван дер Поля-Дуффинга

Новикова Е.Р.

Резюме

В работе предложена новая математическая модель осциллятора Ван дер Поля-Дуффинга с внешним периодическим воздействием с учетом эредитарности. Эредитарность или эффект памяти в динамической системе определяет зависимость текущих ее состояний от предыдущих и описывается с помощью интегро-дифференциальных уравнений. В работе рассмотрен специальный класс интегро-дифференциальных уравнений - уравнений с производными дробных порядков. Одно из таких уравнений, характеризующее нелинейные колебания Ван дер Поля-Дуффинга, будет являться объектом нашего исследования. Предложен алгоритм нахождения численного решения исходного модельного уравнения, который основан на конечно-разностной схеме. Разработана компьютерная программа, реализующая этот алгоритм. С помощью программы построены осциллограммы и фазовые траектории для эредитарного осциллятора Ван дер Поля-Дуффинга в зависимости от различных значениях управляющих параметров.

Введение

Эредитарные процессы представляют особый интерес в связи с различными приложениями. Например, в монографии В.В. Учайкина [1] эредитарным процессам посвящена целая глава, там же приведен пример эредитарного осциллятора, который был впервые изучен итальянским математиком В. Вольтерра, а результаты исследований были приведены в его работе [2]. Эффект последействия или эредитарности характеризует зависимость текущего состояния системы от ее предыдущих состояний, необязательно от всех. Математическое описание эффекта памяти дается интегро-дифференциальным уравнением, при чем ядро этого уравнения называется функции памяти. В случае, когда функция памяти имеет степенной вид интегро-дифференциальное уравнение переходит в уравнение с производными дробных порядков, которые изучаются в рамках теории дробного исчисления [3].

Некоторые эредитарные динамические системы были описаны в монографиях [4,5]. В работе рассмотрена модель осциллятора Ван дер Поля-Дуффинга с учетом эредитарности, которая была решена с помощью конечно-разностной схемы. С помощью численного решения в зависимости от различных значений управляющих параметров были построены осциллограммы и фазовые траектории.

Постановка задачи и методика решения. Модель Ван-дер-Поля - Дуффинга (ВПД) в присутствии периодического внешнего воздействия описывается уравнением:

(1)

где - управляющий параметр, - частота, а - амплитуда внешнего воздействия, - параметр фазовой нелинейности, определяющий не изохронность колебаний. Заметим, в уравнении (1) присутствуют нелинейности характерные для осцилляторов Ван дер Поля [6] и Дуффинга [7]. Квадратичная нелинейность в коэффициенте при младшей производной, характеризует автоколебания, а кубическая нелинейность - зависимость периода колебаний от амплитуды. уравнение осциллограмма дуффинг

Для уравнения (1) введем начальные условия:

(2)

Задача (1), (2) является классической дифференциальной задачей Коши для уравнения ВПД. Введем эредитароность в уравнение (1). Для этого рассмотрим следующее интегро-дифференциальное уравнение ВПД:

(3)

где и - функции памяти, характеризующие эредитарность.

Отметим, что если функции памяти представляют собой дельта-функции, тогда в системе отсутствует эредитарность. Если функции памяти представляют собой функции Хэвисайда тогда система обладает полной памятью. Если функции памяти являются степенными функциями, например,

(4)

где Г(t) - гамма-функция Эйлера, тогда говорят, что система - с частичной "потерей памяти".

Подставим функции памяти (4) в интегро-дифференциальное уравнение (3). В результате получим:

. (5)

Мы получили интегро-дифференциальное уравнение специального вида. Если обратиться к определению производной дробного порядка по Капуто, то мы приходим к уравнению с дробными производными следующего вида:

, (6)

где дробные дифференциальные операторы равны

определенные в смысле Герасимова-Капуто с дробными порядками .

Можно отметить, что в предельном случае () уравнение (6) переходит в классическое уравнение ВПД (1), поэтому можно считать уравнение (1) частным случаем обобщения уравнения (6). Интегро-дифференциальное уравнение ВПД (6) будем называть дробным, или фрактальным уравнением, а процесс, которые оно описывает, будем называть фрактальными, или эредитарными.

Отметим, что функции памяти в интегро-дифференциальном уравнении (5) могут быть отличными от степенных функций, что приводит к другим интегро-дифференциальным уравнениям.

Задача Коши (2), (6) в общем виде не имеет точного решения в силу того, что модельное уравнение является нелинейным, поэтому надо использовать численные методы для ее решения. В качестве численного метода возьмем метод конечно-разностных схем, так как его легко можно реализовать в любой компьютерной среде.

Будем рассматривать равномерную сетку. Для этого разобьем временной интервал на равных частей. В результате получим равномерную сетку , где шаг сетки , . Значения искомой функции , будем называть ее сеточной функцией. Аппроксимация дробных операторов задачи Коши (6) осуществляется следующим образом [5]:

,,

, .

Подставим эти аппроксимации в модельное уравнение (6). Приходим к следующей конечно-разностной задаче:

(7)

Отметим, что дифференциальная задача Коши (2), (6) является жесткой при больших значений управляющего параметра , поэтому явная конечно-разностная схема (7) будет работать в случае уменьшение шага сетки . Оценка шага - это отдельная задача, фактически связанная с качественными свойствами схемы (7) - устойчивостью и сходимостью и в настоящей работе не рассматривалась. Будем считать, что значения параметра достаточно малы для того, чтобы в процессе вычислений не уменьшать шаг сетки , т.е. будем рассматривать лишь «мягкую» задачу Коши (2) и (6).

Результаты моделирования и их обсуждение. Рассмотрим различные примеры работы конечно-разностной схемы (8). Построим осциллограммы и фазовые траектории в зависимости от различных значений управляющих параметров нелинейной эредитарной колебательной системы ВДП.

Пример 1. (Изменение параметра ). Значения управляющих параметров выберем следующими: . На рис. 1 приведены осциллограммы для примера 1, при различных значениях дробного параметра :

Рис. 1. Осциллограммы, построенные по схеме (8) для примера 1 при различных значениях

Из рис. 1 видно, что при уменьшении значения дробного параметра , амплитуда колебаний быстрее выходит на постоянный уровень. Этот факт также подтверждают фазовые траектории (рис. 2), которые выходят на соответствующие предельные циклы.

Рис. 2. Фазовые траектории, полученные по схеме (8) для примера 1 при различных значениях

Пример 2. (Изменение параметра ). Значения управляющих параметров выберем следующими: . На рис. 2 приведены осциллограммы для примера 2, при различных значениях дробного параметра :

Рис. 3. Осциллограммы, построенные по схеме (8) для примера 2 при различных значениях

Из рис. 3 мы можем заметить, что уменьшение значений дробного параметра существенного изменения в форму осциллограмм не вносит. Колебания со временем выходят на установившийся режим с постоянной амплитудой. Поэтому можно сделать вывод, что фазовые траектории выходят практически на один и тот же предельный цикл (рис. 4).

Рис. 4. Фазовые траектории, полученные по схеме (8) для примера 2 при различных значениях

Пример 3. (Изменение параметра ). Значения управляющих параметров выберем следующими: .

На рис. 5 приведены осциллограммы для примера 3, при различных значениях амплитуды внешнего воздействия :

Рис. 5. Осциллограммы, построенные по схеме (8) для примера 5 при различных значениях

Из рис. 5 видно, что отсутствие внешнего воздействия (рис.5a) приводит к росту амплитуды и начиная с некоторого момента времени ее значения выходят на постоянный уровень. Далее мы видим сложные по форме колебания, которые по-видимому, говорят о возможности много периодических решений задачи Коши (2) и (6). Это косвенно подтверждают соответствующие фазовые траектории (рис. 6).

Рис. 6. Фазовые траектории, полученные по схеме (8) для примера 5 при различных значениях

Заключение

Хочется отметить, что наличие различных колебательных режимов эредитарного осциллятора ВПД, требует дальнейшего его изучение. Например, интерес представляет построение карт динамических режимов и сечений Пуанкаере с целью классификации периодических решений, а также устойчивости точки покоя [8]. Другое направление исследований заключается в изучение качественных свойств конечно-разностной схемы (8) [9], а также жесткости задачи Коши (2), (6). Так же справедливо дальнейшее обобщение задачи Коши (2), (6) в случае функций и по аналогии с работами [9,10].

Автор выражает благодарность научному руководителю, к.ф.-м.н., профессору РАЕ, Р.И. Паровику за ценные советы и замечания по содержанию данной научной статьи.

Литература

1. Учайкин В.В. Метод дробных производных. Ульяновск: Артишок, 2008. 512 с.

2. Volterra V. Sur les 'equations int'egro-diff'erentielles et leurs applications // Acta Mathematica. 1912. Vol. 35, no. 1. P. 295-356.

3. Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.

4. Petras I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Beijing and Springer-Verlag Berlin Heidelberg: Springer, 2011. 218 p.

5. Паровик Р.И. Математическое моделирование линейных эредитарных осцилляторов. Петропавловск-Камчатский: КамГУ им. Витуса Беринга. 2015. 178 с.

6. Паровик Р.И. Математическая модель фрактального осциллятора Ван-дер-Поля // Доклады Адыгской (Черкесской) Международной академии наук. 2015. Т. 17. № 2. С. 57-62.

7. Паровик Р.И. Математическое моделирование нелокальной колебательной системы Дуффинга с фрактальным трением // Вестник КРАУНЦ. Физико-математические науки. 2015. №1(10). С. 18-24.

8. Паровик Р.И. Об исследовании устойчивости эредитарного осциллятора Ван дер Поля // Фундаментальные исследования. 2016. №3-2. С. 283-287.

9. Parovik R.I. Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable order fractional derivatives // Archives of Control Sciences. 2016. vol. 26. no 3. pp. 429-435.

10. Паровик Р.И. Конечно-разностные схемы для фрактального осциллятора с переменными дробными порядками // Вестник КРАУНЦ. Физико-математический. 2015. № 2(11). С. 88-85.

Размещено на Allbest.ru

...

Подобные документы

  • Решение уравнения гармонического осциллятора при помощи разложения в ряд Тейлора. Применение метода индуцированной алгебры. Решение уравнения гармонического осциллятора при помощи метода индуцированной алгебры. Сравнение работоспособности методов решений.

    курсовая работа [92,0 K], добавлен 24.05.2012

  • Нахождение особых точек уравнений, определение их типов, построение фазовых траекторий в окрестности каждой особой точки. Исследование циклических траекторий на изохронность, устойчивости нулевого решения, доказывание существования циклов в уравнениях.

    контрольная работа [457,9 K], добавлен 23.09.2010

  • Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.

    научная работа [47,7 K], добавлен 05.05.2010

  • Изучение методики расчета температурных полей, использующей традиционный конечный элемент и введенный коэффициент учета объемности поля. Порядок математического моделирования задачи механики сплошных сред. Преимущества и недостатки численного решения.

    курсовая работа [781,4 K], добавлен 28.12.2012

  • Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.

    дипломная работа [477,4 K], добавлен 17.06.2015

  • Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.

    курсовая работа [118,7 K], добавлен 30.04.2011

  • Составление математической модели для предприятия, характеризующей выручку предприятия "АВС" в зависимости от капиталовложений (млн. руб.) за последние 10 лет. Расчет поля корреляции, параметров линейной регрессии. Сводная таблица расчетов и вычислений.

    курсовая работа [862,4 K], добавлен 06.05.2009

  • Синтез оптимального управления при осуществлении разворота. Разработка математической модели беспилотных летательных аппаратов. Кинематические уравнения движения центра масс. Разработка алгоритма оптимального управления, результаты моделирования.

    курсовая работа [775,3 K], добавлен 16.07.2015

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Вычисление траектории на плоскости в случае декартовых координат, ортогональных и изогональных траекторий семейства. Графическое решение дифференциального уравнения первого порядка, построение ортогональных траекторий в задачах картографии, навигации.

    курсовая работа [542,6 K], добавлен 25.06.2014

  • Понятие волнового уравнения, описывающего различные виды колебаний. Рассмотрение явной разностной схемы "крест" для решения данной задачи. Нахождение решений на нулевом и первом слоях с помощью начальных условий. Виды и решения интегральных уравнений.

    презентация [240,6 K], добавлен 18.04.2013

  • Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.

    курсовая работа [212,6 K], добавлен 11.12.2013

  • Теория игр - математическая теория конфликтных ситуаций. Разработка математической модели игры двух лиц с нулевой суммой, ее реализация в виде программных кодов. Метод решения задачи. Входные и выходные данные. Программа, руководство пользователя.

    курсовая работа [318,4 K], добавлен 17.08.2013

  • Краткое математическое описание циклических кодов с точки зрения алгебры конечных полей, которого вполне достаточно для решения задачи нахождения порождающего полинома кода, используя корни. Полиномиальное представление двоичных чисел. Определение поля.

    контрольная работа [690,0 K], добавлен 01.01.2011

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.

    контрольная работа [835,6 K], добавлен 27.04.2011

  • Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.

    курсовая работа [19,2 K], добавлен 18.12.2011

  • Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.

    курсовая работа [183,1 K], добавлен 25.11.2011

  • Аналитическое и компьютерное исследования уравнения и модели Ван-дер-Поля. Сущность и особенности применения методов Эйлера и Рунге-Кутта 4 порядка. Сравнение точности метода Эйлера и Рунге-Кутта на одном графике, рисуя фазовые траектории из 1 точки.

    курсовая работа [341,7 K], добавлен 06.10.2012

  • Проектирование математической модели. Описание игры в крестики-нолики. Модель логической игры на основе булевой алгебры. Цифровые электронные устройства и разработка их математической модели. Игровой пульт, игровой контроллер, строка игрового поля.

    курсовая работа [128,6 K], добавлен 28.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.