Регрессионные модели и линеаризация

Нелинейные зависимости, поддающиеся непосредственной линеаризации. Сущность правила Крамера или Гаусса и кривой Лаффера. Пример гиперболической зависимости. Описание кривой Энгеля. Экспоненциальная (показательная) зависимость и степенная модель.

Рубрика Математика
Предмет Математика
Вид лекция
Язык русский
Прислал(а) Аля
Дата добавления 07.04.2018
Размер файла 52,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Отношения зависимости. Произвольные пространства зависимости. Транзитивные и конечномерные пространства зависимости. Существование базиса в транзитивном пространстве зависимости. Связь транзитивных отношений зависимости с операторами замыкания. Матроиды.

    дипломная работа [263,2 K], добавлен 27.05.2008

  • Рассмотрение понятия и сущности линеаризации. Изучение способов линейной аппроксимации функции преобразования средств измерений. Поиск погрешностей линеаризации; сопоставление полученных результатов для каждого метода на примере решения данных задач.

    контрольная работа [46,4 K], добавлен 03.04.2014

  • Нахождение уравнения гиперболы при заданном значении вещественной полуоси. Вычисление предела функции и ее производных. Составление уравнения нормали к кривой. Решение системы алгебраических уравнений методом Гаусса и при помощи формулы Крамера.

    контрольная работа [871,9 K], добавлен 12.10.2014

  • Криволинейный интеграл первого и второго рода. Площадь области, ограниченной замкнутой кривой. Объем тела, образованного вращением замкнутой кривой. Центр масс и моменты инерции кривой. Магнитное поле вокруг проводника с током. Сущность закона Фарадея.

    реферат [1,4 M], добавлен 09.01.2012

  • Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.

    контрольная работа [126,8 K], добавлен 08.05.2009

  • Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.

    презентация [301,4 K], добавлен 10.11.2014

  • По заданному уравнению кривой второго порядка определен вид кривой, фокусы и эксцентриситет. Составление уравнения параболы с вершиной в начале координат. Нахождение производных с помощью формул дифференцирования. Действия над комплексными числами.

    контрольная работа [113,6 K], добавлен 16.10.2013

  • Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.

    контрольная работа [989,1 K], добавлен 22.04.2014

  • Алгоритм вычисления интегральной суммы для функции нескольких переменных f(x, y) по плоской кривой АВ. Ознакомление с понятием криволинейного интеграла первого рода. Представление формулы расчета криволинейного интеграла по пространственной кривой.

    презентация [306,9 K], добавлен 17.09.2013

  • Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.

    контрольная работа [133,5 K], добавлен 12.01.2011

  • Исследование зависимости потребления бензина в городе от количества автомобилей с помощью методов математической статистики. Построение диаграммы рассеивания и определение коэффициента корреляции. График уравнения линейной регрессии зависимости.

    курсовая работа [593,2 K], добавлен 28.06.2009

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Определение разности и произведения матриц. Решение системы линейных уравнений методом Крамера. Уравнение прямой проходящей через точки A (xa, ya) и C (xc, yc). Порядок определения типа кривой второго порядка и ее основных геометрических характеристик.

    контрольная работа [272,0 K], добавлен 11.12.2012

  • Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.

    контрольная работа [551,9 K], добавлен 27.08.2009

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Понятие дифференциального уравнения. Нахождение первообразной для заданной функции. Нахождение решения дифференциального уравнения. Выделение определенной интегральной кривой. Понятие произвольных независимых постоянных. Уравнение в частных производных.

    презентация [42,8 K], добавлен 17.09.2013

  • Алгоритм вычисления интегральной суммы для функции нескольких переменных по кривой АВ. Определение понятия криволинейного интеграла второго рода. Представление суммы интегралов двух функций вдоль кривой АВ как криволинейного интеграла общего вида.

    презентация [69,4 K], добавлен 17.09.2013

  • Пример вычисления определителя второго порядка в общем виде. Свойства векторного произведения и их доказательства. Пример применения правила Крамера для решения систем из n уравнений с n неизвестными. Векторное произведение векторов заданных проекциями.

    контрольная работа [297,9 K], добавлен 14.03.2009

  • Регулярная кривая и ее отдельные точки. Касательная к кривой и соприкасающаяся плоскость. Эволюта и эвольвента плоской кривой. Кривые на плоскости, заданные уравнением в неявной форме. Примеры точки возврата; понятие асимптоты и полярных координат.

    курсовая работа [936,1 K], добавлен 21.08.2013

  • Решение системы линейных алгебраических уравнений по формулам Крамер. Возведение комплексного числа в натуральную степень. Исследование функции на возрастание и убывание. Нахождение ординаты в экстремальной точке. Задача на вычисление длины дуги кривой.

    контрольная работа [303,7 K], добавлен 13.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.