Золотое сечение
Определение понятий симметрии и ассиметрии, золотое сечение. Применение и использование божественной пропорции человеком. Виды симметрии. Математическая сущность золотого сечения. Новая теория гиперболических функций. Анализ строения "золотых фигур".
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 02.04.2018 |
Размер файла | 113,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
- Введение
- 1. Золотое сечение - симметрия или ассиметрия?
- 2. Математическая сущность золотого сечения
- 3. Золотое сечение в современной науке
- Заключение
- Список литературы
Введение
Золотое сечение (гармоническое деление, деление в крайнем и среднем отношении) - деление отрезка на две части таким образом, что большая его часть является средней пропорциональной между всем отрезком и меньшей его частью.
Принципы «золотого сечения» используются в математике, физике, биологии, астрономии и др. науках, в архитектуре и др. искусствах. Они лежат в основе архитектурных пропорций многих замечательных произведений мирового зодчества, главным образом античности и Возрождения.
«В геометрии существует два сокровища - теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем». Эти слова сказал четыре столетия назад немецкий астроном и математик Иоганн Кеплер, они являются эпиграфом практически ко всем трудам, посвященным «золотому сечению». Гениальный ученый поставил пропорцию «золотого сечения» на один уровень с самой знаменитой геометрической теоремой.
Золотое сечение (или пропорция Фидия), по мнению многих исследователей, является наиболее приятной для человеческого глаза. Этим можно объяснить ее многогранное применение человеком, например такие сферы как архитектура, живопись, фотография и ландшафтный дизайн широко используют эту пропорцию и связанные с ней свойства. Это пропорция была в почете у умнейших людей, таких как Леонардо Да Винчи и Ле Корьбюзье. Художник и архитектор Леонардо Да Винчи считал, что идеальные пропорции человеческого тела должны быть связаны с золотым сечением. Архитектор Ле Корьбюзье руководствовался им во множестве своих работ. Мне же хотелось получить первоначальные знания по этой теме.
В эпоху Возрождения золотое сечение было очень популярно например было принято брать размеры картины такими, чтобы отношение ширины к высоте было равно числу Фидия. Форму золотого сечения придавали не только картинам, но и книгам, столам, открыткам. Поэтому мне бы хотелось подробнее рассмотреть применение золотого сечения в различные эпохи от древности, эпохи Возрождения до XlX века. Для этого нужно прочитать и изучить литературу, связанную с этой темой, найти наиболее интересные факты и изложить их в своем реферате.
Цель данного реферата заключается в том, чтобы представить информацию наглядно и интересно. Для достижения цели поставлены следующие задачи
1. дать определение понятий симметрии и ассиметрии, золотое сечение.
2. описать золотые фигуры и построить некоторые из них
3. рассказать о применении и использовании божественной пропорции человеком
1. Золотое сечение - симметрия или ассиметрия?
Важнейшая цель этого реферата - показать красоту как главную категорию эстетики и математики.
Задумывались ли вы когда-нибудь над значением слова «гармония»?
Гармония греческое слово, обозначающее «согласованность, соразмерность, единство частей и целого». Внешне гармония может проявляться в мелодии, ритме, симметрии и пропорциональности. Две последние относятся к математике. Математика уникальное средство познания красоты. Поскольку красота многогранна и многолика, она подтверждает универсальность математических закономерностей.
Во всем царит гармонии закон,
И в мире всё суть ритм, аккорд и тон.
Дж. Драйден
Продолжим рассказ по принципу от большего к меньшему.
Симметрия - основополагающий принцип устройства мира.
Симметрия - в широком или узком смысле, в зависимости от того, как вы определяете значение этого понятия, - является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.
Г. Вейль
Симметрия - распространенное явление, ее всеобщность служит эффективным методом познания природы. Симметрия в природе нужна, чтобы сохранять устойчивость. Внутри внешней симметрии лежит внутренняя симметрия построения, гарантирующая равновесие. Симметрия - проявление стремления материи к надежности и прочности.
Симметричные формы обеспечивают повторяемость удачных форм, поэтому более устойчивы к различным воздействиям. Симметрия многообразна.
Неизменность тех или иных объектов может наблюдаться по отношению к разным операциям - поворотам, отражениям, переносам.
Существует три главных вида симметрии изучаемых в школе: симметрия относительно точки (центральная симметрия), симметрия относительно прямой (осевая симметрия) и симметрия относительно плоскости.
Центральная симметрия цветка
Это не единственные виды симметрии, также существует и винтовая симметрия. Если рассматривать расположение листьев на ветке дерева мы заметим, что лист отстоит от другого, но и повернут вокруг оси ствола. Листья располагаются на стволе по винтовой линии, чтобы не заслонять друг от друга солнечный свет.
Винтовая симметрия в природе на примере ракушки .
Симметрия многолика. Она обладает свойствами, которые одновременны и просты и сложны, способны проявляться и единожды и бесконечно много раз.
Если человеку мало знакомому предложить несколько фигур, он интуитивно выберет наиболее симметричные. Скорее всего, оказавшись в такой ситуации, мы выберем равносторонний треугольник или квадрат.
Человек инстинктивно стремится к устойчивости, удобству и красоте. Мир настолько хаотичен и непредсказуем, что человеку наиболее приятны для восприятия фигуры и вещи, содержащие в себе порядок, гармонию, симметрию. Работать с фигурами, у которых больше симметрий легче.
По тому, сколько симметрий имеют фигуры, можно проводить их классификацию. Самой совершенной фигурой считается шар, обладающий всеми видами симметрии.
Симметрия трудолюбива. Каждому своему виду она дает могущество порождать все новые и новые фигуры.
Симметрию можно наблюдать во всех сферах нашей жизни: симметрия построения зданий, музыки и симметрия образов в литературе, симметрия танца.
Симметрия является одним из принципов построения мира.
Симметрия - страж покоя,
Асимметрия - двигатель жизни.[3]
Гармоничным может быть и ассиметричное. Симметрия вызывает чувство покоя, неподвижности, то асимметрия вызывает ощущение движения и свободы.
Исследователи, получившие Нобелевскую премию, показали, что наш мир несимметричен, законы симметрии во Вселенной не наблюдаются. Мир асимметричен на всех уровнях: от элементарных частиц до биологических видов.
2. Математическая сущность золотого сечения
Самым известным примером гармонии ассиметрии является золотое сечение. Есть слова, принадлежащие Иоганну Кеплеру: «Геометрия владеет двумя сокровищами: одно из них - теорема Пифагора, другое - деление отрезка в среднем и крайнем отношении»[4] Великий ученый пол словами «деление отрезка в среднем и крайнем отношении» имеет ввиду известную пропорцию - золотое сечение. Именно эта пропорция является темой моего реферата. В следующих главах я расскажу о применении золотого сечения, а ниже дам определение этого понятия и способы его получения.
Деление отрезка в среднем и крайнем отношении называют золотым сечением. Другое название - «золотая пропорция».[5]
Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему отрезку.
В пропорции произведение крайних членов равно произведению средних
Длина отрезка выражается положительным числом, поэтому после преобразований
или
Число обозначается буквой в честь древнегреческого скульптора Фидия, в творениях которого это число встречается многократно.
Число - иррациональное. В практике его используют округляя до тысячных 0,618 или сотых 0,62 или десятых 0,6.
Части золотого сечения приблизительно составляют 62% и 38% всего отрезка.
Древние математики обнаружили, что золотое сечение можно получить при помощи геометрии, и потом применять в любом масштабе, даже для строительства пирамид.
Я предлагаю рассмотреть один из многих способов, как это можно сделать.
1. Построим отрезок AB, восстановим в точке B перпендикуляр к AB, на нем отложим точку E таким образом, чтобы
2. Далее соединив точки A и E, отложим , и . Точка С является искомой, она производит «золотое сечение» отрезка AB.
Заметим, что по теореме Пифагора
,
а по построению ,
Из этих равенств следует, что , а отсюда можно получить равенство
Свойства
Первое свойство:
то есть
Второе свойство:
то есть
Эти свойства имеют многогранные применения, но об этом в следующей части.
3. Золотое сечение в современной науке
В каждой науке есть т.н. «метафизические» знания, без которых невозможно существование самой науки. Например, если исключить из математики понятия натурального и иррационального чисел или аксиомы геометрии, математика сразу же перестанет существовать. С таким же правом к разряду «метафизических» знаний может быть отнесено и «золотое сечение», которое считалось «каноном» античной культуры, а затем и эпохи Возрождения. Однако, как это ни парадоксально, в современной теоретической физике и математике «золотая пропорция» никак не отражена. Ныне делаются попытки показать, что «золотое сечение» является одной из важнейших «метафизических» идей, без которой трудно представить дальнейшее развитие науки, в частности, теоретической физики и математики.
Анализ современных программ образования в таких странах, как США, Канада, Россия и Украина, показывает, что в большинстве из них нет даже упоминания о «золотом сечении». То есть, имеет место сознательное игнорирование одного из важнейших открытий античной математики. Возможно, причину следует искать в негативном отношении современной «материалистической» науки и «материалистического» образования к астрологии и так называемым «эзотерическим» наукам. В них «золотое сечение» и связанные с ним геометрические фигуры - «пентаграмма», «Платоновы тела», «куб Метатрона» - широко используются в качестве основных «сакральных» символов. И «материалистическое» образование не нашло ничего более разумного, как выбросить золотое сечение на свалку «сомнительных научных концепций» вместе с астрологией и «эзотерическими» науками. В результат большинство т.н. «образованных» людей хорошо знают «теорему Пифагора», но имеют весьма смутное представление о «золотом сечении».
В настоящее время исследуются математические теории связанные с принципами «золотого сечения»: новая теория гиперболических функций, новая теория чисел, новая теория измерения, теория матриц Фибоначчи и так называемых «золотых» матриц, новые компьютерные арифметики, новая теорию кодирования и новая теория криптографии. Суть новой науки, в пересмотре с точки зрения золотого сечения всей математики, начиная с Пифагора, что, естественно, повлечет в теории новые и наверняка очень интересные математические результаты. В практическом отношении - «золотую» компьютеризацию. А поскольку «математика гармонии» существенно дополнит классическую математику, вполне возможно придется пересмотреть и всю систему современного математического образования.
Заключение
золотое сечение симметрия математический
В заключении попытаемся сформулировать наиболее популярное и понятное для обывателя определение «золотого сечения».
Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.
Нами был проведен исторический экскурс и разобрана математическая сущность «золотого сечения», рассмотрено строение «золотых фигур».
Знакомство с принципами «золотого сечения», помогает видеть гармонию и целесообразность окружающих нас творений природы и человека. Можно сделать выводы:
· во-первых, золотое сечение - это один из основных основополагающих принципов природы;
· во-вторых, человеческое представление о красивом явно сформировалось под влиянием того, какой порядок и гармонию человек видит в природе.
Несмотря на неприятие «золотого сечения» современными «официальными науками, оно повсеместно используется в технике, во многих странах мира, в том числе в России и Украине, довольно крупные учёные продолжают изучать и искать практическое применение одному из «золотых» математических принципов.
Список литературы
1. Азевич А.И. Двадцать уроков гармонии: гуманитарно-математический курс. - М.: Школа-пресс, 1998.
2. Васюткинский Н.Н. Золотая пропорция. - М., 1990.
3. Волошинов А.В. Математика и искусство. - М., 1992.
4. Гарднер М. Математические головоломки и развлечения. - М., 1994.
5. Кованцов Н.И. Математика и романтика. - Киев, 1976.
6. МСЭ // под редакцией Б.А. Введенского. - М. 1959.
7. Пидоу Д. Геометрия и искусство. - М.: Мир, 1989.
8. Прохоров А.И. Золотая спираль // Квант. 1984. № 9.
Размещено на Allbest.ru
...Подобные документы
Определенное отношение длин отрезков. Сооружения, построенные в золотой пропорции. Основы симметрии и ассиметрии. Пропорции мужского тела и золотого сечения. Золотые пропорции в частях тела человека. "Золотое сечение" в математике, архитектуре, живописи.
презентация [290,4 K], добавлен 12.05.2011Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.
презентация [1,9 M], добавлен 27.02.2012Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.
презентация [7,0 M], добавлен 10.11.2014Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.
реферат [2,2 M], добавлен 09.04.2012Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат [20,3 K], добавлен 24.11.2009Изучение принципа золотого сечения – высшего проявления структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Золотое сечение – гармоническая пропорция. Деление отрезка прямой. Динамические прямоугольники.
презентация [1,5 M], добавлен 14.12.2011Основатели учения о золотом сечении. Самый "правильный" многогранник. Математическое пропорциональное содержание пентаграммы. Золотое сечение в архитектуре, в живописи и в живых организмах. Пропорции Покровского Собора на Красной площади в Москве.
презентация [580,5 K], добавлен 16.10.2013Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
реферат [584,7 K], добавлен 22.03.2015Эстетический потенциал математического объекта. Использование золотого прямоугольника в живописи. Пропорциональный циркуль Дюрера. Золотое сечение и гармония в искусстве. Золотой ряд Фибоначчи. Использование орнаментальной и зеркальной симметрий.
курсовая работа [615,2 K], добавлен 11.09.2012Основные виды симметрии (центральная и осевая). Прямая в качестве оси симметрии фигуры. Примеры фигур, обладающих осевой симметрией. Симметричность относительно точки. Точка как центр симметрии фигуры. Примеры фигур, обладающих центральной симметрией.
презентация [2,7 M], добавлен 30.10.2014Виды преобразования симметрии фигур. Понятие оси и плоскости симметрии. Одновременное применение преобразований поворота и отражения, зеркально-поворотная ось. Сопряженные элементы, подгруппы и общие свойства и классификация групп операций симметрии.
реферат [28,0 K], добавлен 25.06.2009Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа [416,0 K], добавлен 09.08.2015Сущность и общая характеристика метода "барона Мюнхгаузена", его применение в алгебре. Нахождение значений выражений с бесконечным числом элементов, использование формулы куба суммы и разности. "Метод барона Мюнхгаузена": золотое сечение и фракталы.
реферат [2,8 M], добавлен 18.01.2011Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.
презентация [147,7 K], добавлен 20.12.2010Понятие призмы в геометрии. Прямые и наклонные призмы, характеристика их оснований, боковых ребер и граней. Площадь боковой поверхности, теорема, ее доказательство и следствие. Сечение призмы плоскостью. Особенности сечения и симметрии правильной призмы.
презентация [219,5 K], добавлен 08.03.2012Понятие симметрии и особенности ее отражения в различных сферах: геометрии и биологии. Ее разновидности: центральная, осевая, зеркальная и вращения. Специфика и направления исследования симметрии в человеческом теле, природе, архитектуре, быту, физике.
презентация [7,2 M], добавлен 13.12.2016Понятие симметрии в математике, ее виды: поступательная, вращательная, осевая, центральная. Примеры симметрии в биологии. Ее проявления в химии в геометрической конфигурации молекул. Симметрия в искусствах. Простейший пример физической симметрии.
презентация [1,6 M], добавлен 14.05.2014Что такое симметрия, ее виды в геометрии: центральная (относительно точки), осевая (относительно прямой), зеркальная (относительно плоскости). Проявление симметрии в живой и неживой природе. Применение законов симметрии человеком в науке, быту, жизни.
реферат [1,3 M], добавлен 14.03.2011Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.
презентация [1001,7 K], добавлен 06.12.2011Центр инверсии: обозначение, пример отображения. Понятие о плоскости симметрии. Порядок оси симметрии, элементарный угол поворота. Физические причины отсутствия осей порядка более 6. Пространственные решетки, инверсионная ось, элементы континуума.
презентация [173,7 K], добавлен 23.09.2013