Возможные структурные состояния детерминистических модулярных структур с фрактальной компонентой в 2D пространстве

Структурные элементы ячейки 2D пространства. Вероятные структурные состояния с учетом кристаллической и фрактальной компонент. Основные классы вероятных фрактал содержащих структур ячеистого 2D пространства. Элементарные ячейки модулярных структур.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 21.06.2018
Размер файла 65,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

возможные структурные состояния детерминистических модулярных структур с фрактальной компонентой в 2d пространстве

Иванов В.В.

Кандидат химических наук, доцент, Южно-Российский государственный технический университет (Новочеркасский политехнический институт)

Аннотация

Обсуждаются возможные структурные состояния детерминистических модулярных структур с фрактальной компонентой в 2D пространстве.

Ключевые слова: структурное состояние, модулярная структура, детерминистическая фрактальная структура.

Ivanov V.V.

PhD in Chemistry, associate professor, South-Russian state Еngineering University (Novocherkassk Polytechnic Institute)

POSSIBLE STRUCTURAL STATES OF DETERMINISTIC MODULAR STRUCTURES WITH FRACTAL COMPONENT IN 2D SPACE

Abstract

The possible structural states of deterministic modular structures with fractal component in 2D space were discussed.

Keywords: structural state, modular structure, deterministic fractal structure.

Представление основных классов возможных структурных состояний локальной структуры в ячейке структурированного 2D пространства основано на следующих предположениях.

1. Структурные элементы ячейки 2D пространства - результат локального проявления вполне определенных структурных элементов 2D ячейки одного из подпространств 3D пространства [1, 2].

2. Структурное состояние в ячейке может быть обусловлено как кристаллическими компонентами r подструктуры R2, так и ее возможными фрактальными компонентами f [3 - 10].

3. Кристаллическая компонента r модулярной структуры R2 может быть определена как с помощью дискретной группы трансляций {ti}, так и с помощью непрерывной группы трансляций {ti} (i = 1, 2) [4 - 6, 11 - 16].

4. Фрактальная компонента f структуры R2 может быть определена как i-модулярная гибридная структура (в общем случае i = 1, 2) с помощью соответствующих своих генераторов (точечных, линейчатых или их возможных комбинаций) [17 - 24].

Проанализируем вероятные структурные состояния с учетом кристаллической и фрактальной компонент. Структурные состояния R2-подструктур соответствующей R3 структуры (рис.1):

- структура R32r1f (r1, r2, f) - R2-подструктуры: R22r (r1, r2), R21r1f: (r1, f) и (r2, f),

- структура R31r2f (r1, f1, f2) - R2-подструктуры: R21r1f: (r1, f1) и (r1, f2), R22f: (f1, f2),

- структура R33f (f1, f2, f3) - R2-подструктуры: R22f: (f1, f2), (f1, f3) и (f2, f3).

С учетом характера элементов группы трансляций ячеистого 3D пространства, а также возможных топологических размерностей модулей фрактальных структур получены основные классы вероятных фрактал содержащих структур ячеистого 2D пространства (рис.1).

По своим индивидуальным геометрико-топологическим характеристикам и размерности структуры разных классов существенно отличаются между собой. Очевидным образом это проявляется в локальных размерностях структуры 2D пространства с разными структурными состояниями. Будем принимать во внимание следующее:

DimL R22r = S2i DimL R1ri ,

DimL R1t = 0, DimL R1t = 1,

DimL R1f = DimL Gen R1f .

Рис.1 - Схема взаимосвязей возможных структурных состояний объектов в 1D - 3D пространствах (t, ф и f - кристаллическая, линейчатая и фрактальная компоненты структурных состояний, соответственно; PF, FG и LF - основные классы фрактал содержащих детерминистических структур в 2D пространстве: точечные, гибридные и линейчатые).

В этом случае локальные размерности структур могут быть определены следующим образом:

ячейка кристаллический фрактальный пространство

DimL R22t = 0, DimL R21t1t = 1, DimL R22t = 2,

DimL R21t1f = Dim Genf, DimL R21t1f = 1 + Dim Gen f,

DimL R22f = Dim Gen f1 + Dim Gen f2.

Следует отметить, что глобальная размерность структур только с кристаллической компонентой состояния DimG R22r = 2. Однако, если присутствует хотя бы одна фрактальная компонента состояния структуры, то тогда глобальная размерность ее DimG R22r < 2.

В качестве примера приведем элементарные ячейки детерминистических предфрактальных структур на основе итерационной последовательности IC(1/2) и канторова множества точек CM(1/3) вида R22f (рис.2). Элементарные ячейки соответствующих им модулярных структур вида R21t1f, R21t1f и R22f с минимальными периодами идентичности в 2D пространстве с указанием их группы симметрии G22 и количества занятых пространственных ячеек представлены там же (рис.2, б-г).

Рис.2 - Элементарные ячейки детерминистических предфрактальных структур IC2(1/2) (1,а) и CM2(1/3) вида R22f (2,а), а также возможные на их основе элементарные ячейки модулярных структур вида R21t1f, R21t1f и R22f с минимальными периодами идентичности (б - г).

Все приведенные детерминистические структуры являются невырожденными модулярными структурами. Это означает, что каждая из них - представитель множества слоистых модулярных структур, состоящих из набора одних и тех же модулей в определенном соотношении, но с разным их позиционным упорядочением в ячейках 2D пространства. Модулярные структуры каждого множества являются политипными модификациями исходной невырожденной структуры с фрактальной компонентой и обладают близкими геометрическими свойствами [6].

Литература

1. Лорд Э.Э., Маккей А.Л., Ранганатан С. Новая геометрия для новых материалов. - М.: ФИЗМАТЛИТ, 2010. - 264 с.

2. Стюарт Я. Концепции современной математики. - Мн: Выш. школа, 1980. - 384с.

3. Иванов В.В., Таланов В.М. Разбиение и структурирование пространства, описание процесса формирования модульного кристалла // Успехи соврем. естествознания, 2012. - №8. - С.75-77.

4. Иванов В.В., Таланов В.М. Разбиение структурированного 3D пространства на модулярные ячейки и моделирование невырожденных модулярных структур // Успехи соврем. естествознания, 2012. - №10. - С.78-80.

5. Иванов В.В., Таланов В.М. Формирование структурного модуля для модулярного дизайна в 3D пространстве // Успехи соврем. естествознания, 2012. - №9. - С.74-77.

6. Иванов В.В., Таланов В.М. Принципы модулярного строения регулярных фрактальных структур // Успехи соврем. естествознания, 2012. - №3. - С.56-57.

7. Иванов В.В., Демьян В.В., Таланов В.М. Эволюционная модель формирования и анализ детерминистических фрактальных структур // Успехи соврем. естествознания, 2012. - №4. - С.230-232.

8. Иванов В.В., Таланов В.М., Гусаров В.В. Информация и структура в наномире: модулярный дизайн двумерных наноструктур и фрактальных решеток // Наносистемы: Физика, Химия, Математика, 2011. - Т.2. - № 3. - С.121-134.

9. Иванов В.В. Формирование и символьное описание детерминистических гибридных фрактальных структур в 2D пространстве // Современные наукоемкие технологии. 2013. - №.9 - С.89-93.

10. Иванов В.В., Таланов В.М. Конструирование фрактальных наноструктур на основе сеток Кеплера-Шубникова // Кристаллография, 2013. - Т.58. - № 3. - С. 370-379.

11. Иванов В.В. Комбинаторное моделирование вероятных структур неорганических веществ. - Ростов-на-Дону: Изд-во СКНЦ ВШ, 2003. - 204с.

12. Иванов В.В., Таланов В.М. Принцип модулярного строения кристаллов // Кристаллография, 2010. - Т.55. - № 3. - С.385-398.

13. Иванов В.В., Таланов В.М. Алгоритм выбора структурного модуля и модулярный дизайн кристаллов // Журн. неорганической химии, 2010. - Т.55. - № 6. - С.980-990.

14. Иванов В.В., Таланов В.М. Комбинаторный модулярный дизайн структур шпинелеподобных фаз // Физика и химия стекла, 2008. - Т.34. - №4. - С.528-567.

15. Иванов В.В., Шабельская Н.П., Таланов В.М., Попов В.П. Итерационный модулярный дизайн двумерных наноструктур // Успехи соврем. естествознания, 2012. - №2. - С.60-63.

16. Иванов В.В., Шабельская Н.П., Таланов В.М. Информация и структура в наномире: модулярный дизайн двумерных полигонных и полиэдрических наноструктур // Соврем. наукоемкие технологии, 2010. - №10. - С.176-179.

17. Иванов В.В. Общая характеристика возможных гибридных мономодулярных фрактальных структур// Соврем. наукоемкие технологии. 2013.- №.5. - С.29-31.

18. Иванов В.В. Формирование фрактальных структур на основе итерационной последовательности и канторова множества точек с заданными характеристиками в 1D пространстве // Успехи соврем. естествознания, 2013. - №8. - С.136-137.

19. Иванов В.В. Описание и классификация точечных мономодулярных фрактальных структур // Успехи соврем. естествознания, 2013. - №8. - С.134-135.

20. Иванов В.В. Анализ возможности получения новых точечных и квазиточечных фрактальных структур на основе итерационной последовательности и канторова множества точек // Успехи соврем. естествознания, 2013. - №8. - С.129-130.

21. Иванов В.В., Демьян В.В., Таланов В.М. Информация и структура в наномире: модулярный дизайн фрактальных структур в двумерном пространстве // Междунар. журн. эксп. образования, 2010. - №11. - С.153-155.

22. Иванов В.В., Таланов В.М. Модулярное строение наноструктур: Информационные коды и комбинаторный дизайн // Наносистемы: Физика, Химия, Математика, 2010. - Т.1. - №1. - С.72-107.

23. Иванов В.В., Таланов В.М., Гусаров В.В. Символьное описание структурных типов кристаллов // Наносистемы: Физика, Химия, Математика, 2012. - Т.3. - № 4. - С.82-100.

24. Иванов В.В., Таланов В.М. Символьное описание упаковок модулей и коды структур кристаллов / Журн. структурной химии, 2013. - Т.54. - №2. - С.354-376.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность понятия "фрактал". Сущность фрактальной размерности. Размерность Хаусдорфа и ее свойства. Канторово множество и его обобщение. Снежинка и кривая Коха. Кривая Пеано и Госпера, их особенности. Ковер и салфетка Серпинского. Дракон Хартера-Хейтуэя.

    курсовая работа [862,6 K], добавлен 23.07.2011

  • Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

    дипломная работа [1,7 M], добавлен 17.05.2010

  • Определение и структурные уравнения аффинной связности. Экспоненциальные отображения в теории пространств. Ковариантное дифференцирование и классические формулировки. Аффинное пространство n измерений. Точечно-векторная аксиоматика аффинного пространства.

    курсовая работа [167,8 K], добавлен 23.10.2012

  • Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.

    реферат [375,9 K], добавлен 04.12.2011

  • Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.

    дипломная работа [354,0 K], добавлен 08.08.2007

  • Основные композиции движений пространства. Композиции центральных симметрий пространства. Композиция зеркальной и центральной симметрий пространства. Композиции подобий и аффинных преобразований пространства.

    дипломная работа [132,4 K], добавлен 08.08.2007

  • Особенности неподвижного геометрического трехмерного пространства, его отличительные признаки от подвижного пространства. Отличия физической сущности скорости от математической. Понятие производной вектора по времени, методика и этапы ее определения.

    статья [174,3 K], добавлен 25.12.2010

  • Действие оператора точечной группы в двух- и трехмерном пространстве. Определение его порядка по матрице Система эквивалентных точек. Возможные порядки осей симметрии в кристаллографическом пространстве. Геометрическая интерпретация сложения операторов.

    презентация [107,4 K], добавлен 23.09.2013

  • Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.

    курсовая работа [232,5 K], добавлен 12.10.2009

  • Отношения зависимости. Произвольные пространства зависимости. Транзитивные и конечномерные пространства зависимости. Существование базиса в транзитивном пространстве зависимости. Связь транзитивных отношений зависимости с операторами замыкания. Матроиды.

    дипломная работа [263,2 K], добавлен 27.05.2008

  • Системы линейных уравнений и интерпретация их решений как пересечение гиперплоскостей в n-мерном координатном пространстве. Размерность и подпространства линейного пространства. Оптимизационные задачи линейного программирования. Суть симплекс-метода.

    курсовая работа [132,2 K], добавлен 10.01.2014

  • Сущность и методологические проблемы математической физики. Особенности математического моделирования жёсткости прокатного калиброванного валка. Основные положения и свойства идеальной математики. Порядок устройства и структурные элементы идеальных чисел.

    доклад [350,5 K], добавлен 10.10.2010

  • Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.

    дипломная работа [354,6 K], добавлен 24.02.2010

  • Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.

    реферат [249,4 K], добавлен 21.01.2011

  • Понятие о статистическом графике, его элементы. Незаменимость графических изображений благодаря их выразительности, доходчивости, лаконичности и универсальности. Классификация видов графиков. Виды диаграмм – структурные, динамичные. Статистические карты.

    учебное пособие [4,0 M], добавлен 09.02.2009

  • Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.

    презентация [68,5 K], добавлен 21.09.2013

  • Перестройка структуры и содержания учебного курса математики в процессе проведения реформ математического образования. Определения косинуса, синуса и тангенса острого угла. Основные тригонометрические формулы. Понятие и основные свойства векторов.

    дипломная работа [328,2 K], добавлен 11.01.2011

  • Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.

    курсовая работа [1,1 M], добавлен 22.09.2014

  • Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.

    шпаргалка [1,1 M], добавлен 12.01.2009

  • Граф состояний как направленный граф, вершины которого изображают возможные состояния системы, а ребра возможные переходы системы из одного состояния в другие. Влияние интенсивностей восстановления и отказа элементов на работоспособность всей системы.

    реферат [549,3 K], добавлен 09.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.