Методы принятия управленческих решений

Составление математической модели задачи. Построение линии уровня и вектора градиента. Решение задачи геометрическим методом и системы методом обратной матрицы. Построение области допустимых решений данной задачи, ограниченной несколькими прямыми.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 21.06.2018
Размер файла 230,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Алтайский государственный технический университет им. И.И. Ползунова

Кафедра «Экономика и производственный менеджмент»

Направление бакалавриата

«Менеджмент»

КОНТРОЛЬНАЯ РАБОТА

Методы принятия управленческих решений

Студент

Попова Я.С.

Барнаул 2018

Задача 1

Составим математическую модель задачи. Пусть x1 - количество трехтонных автомашин, x2 - количество пятитонных автомашин. По условию 0 ? x1 ? 24, 0 ? x2 ? 22. На приобретение грузовиков необходима сумма 4005x1+ 5005x2, при этом по условию она не должна превосходить 141 005, т.е. 4005x1+ 5005x2 ? 141005. Теперь введем целевую функцию - грузоподъемность автомашин, которая составляет 3x1+ 5 x2.

Таким образом, задача заключается в следующем: максимизировать целевую функцию

f = 3x1+ 5x2 > max (1)

математический задача геометрический матрица

при ограничениях

4005x1+ 5005x2 ? 141005 (1)

0 ? x1 ? 24 (2)

0 ? x2 ? 22 (3)

Построим область допустимых решений задачи, ограниченную прямыми:

4005x1+ 5005x2 = 141005 (I)

x1 = 24 (II)

x2 = 22 (III)

Рисунок 1

Множество точек, определяемых неравенствами (1), (2), (3) - многоугольник АВСДО, в одной из вершин которого достигается максимум функции. Построим линию уровня 3x1 + 5x2 =0 и вектор градиента (3, 5). Будем передвигать линию уровня, пока не выйдем из многоугольника, что произойдет в точке В с координатами (8, 22). В этой точке функция принимает максимальное значение 134. Чтобы достичь этого значения грузоподъемности, нужно приобрести 8 трехтонных грузовиков и 22 пятитонных.

Задача 2

Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(ai) = 11, которая указывает на максимальную чистую стратегию A1.

Верхняя цена игры b = min(bj) = 19. Что свидетельствует об отсутствии седловой точки, так как a ? b, тогда цена игры находится в пределах 11 ? y ? 19. Находим решение игры в смешанных стратегиях. Объясняется это тем, что игроки не могут объявить противнику свои чистые стратегии: им следует скрывать свои действия. Игру можно решить, если позволить игрокам выбирать свои стратегии случайным образом (смешивать чистые стратегии)

Решим задачу геометрическим методом, который включает в себя следующие этапы:

1. В декартовой системе координат по оси абсцисс откладывается отрезок, длина которого равна 1. Левый конец отрезка (точка х = 0) соответствует стратегии B1, правый - стратегии B2 (x = 1). Промежуточные точки х соответствуют вероятностям некоторых смешанных стратегий S1 = (p1,p2).

2. На левой оси ординат откладываются выигрыши стратегии B1. На линии, параллельной оси ординат, из точки 1 откладываются выигрыши стратегии B2.

Решение игры (m x 2) проводим с позиции игрока B, придерживающегося максиминной стратегии. Доминирующихся и дублирующих стратегий ни у одного из игроков нет.

Максиминной оптимальной стратегии игрока B соответствует точка N, лежащая на пересечении прямых A1A1 и A3A3, для которых можно записать следующую систему уравнений:

y = 11 + (19 - 11)q2

y = 19 + (11 - 19)q2

Откуда q1 = 1/5q2 = 4/5

Цена игры, y = 123/5

Теперь можно найти минимаксную стратегию игрока A, записав соответствующую систему уравнений, исключив стратегию A2, которая дает явно больший проигрыш игроку A, и, следовательно, p2 = 0.11p1+13p3 = y19p1+11p3 = yp1+p3 = 1или11p1+13p3 = 123/519p1+11p3 = 123/5p1+p3 = 1

Решая эту систему методом обратной матрицы, находим:

p1 = 1/5p3 = 4/5

Рисунок 2

Ответ: Цена игры: y = 123/5, векторы стратегии игроков: P(1/5, 0, 4/5), Q(4/5, 1/5) Таким образом, для первой стратегии необходимо реализовывать 1/5 от всей продукции, или 20%, для третьей стратегии - 4/5 или 80%.

Размещено на Allbest.ru

...

Подобные документы

  • Составление математической модели задачи. Приведение ее к стандартной транспортной задаче с балансом запасов и потребностей. Построение начального опорного плана задачи методом минимального элемента, решение методом потенциалов. Анализ результатов.

    задача [58,6 K], добавлен 16.02.2016

  • Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.

    курсовая работа [354,7 K], добавлен 14.10.2010

  • Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.

    курсовая работа [259,9 K], добавлен 04.05.2011

  • Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.

    курсовая работа [77,1 K], добавлен 02.06.2011

  • Методы определения объемов выпуска изделий каждой модели, при которых прибыль будет максимальна Составление математической модели задачи целочисленного программирования. Решение задачи симплекс-методом. Поиск целочисленного решения методом отсечения.

    контрольная работа [156,9 K], добавлен 30.01.2011

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа [126,9 K], добавлен 20.04.2016

  • Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.

    задача [165,3 K], добавлен 21.08.2010

  • Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.

    контрольная работа [138,7 K], добавлен 05.07.2015

  • Основные положения теории принятия решений, разработанной на основе математических методов и формальной логики, классификация управленческих решений. Некорректно поставленные задачи и регуляризирующие (робастные) алгоритмы: адаптивные, инвариантные.

    курсовая работа [1,1 M], добавлен 23.11.2010

  • Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.

    контрольная работа [462,6 K], добавлен 12.11.2010

  • Задачи и методы линейной алгебры. Свойства определителей и порядок их вычисления. Нахождение обратной матрицы методом Гаусса. Разработка вычислительного алгоритма в программе Pascal ABC для вычисления определителей и нахождения обратной матрицы.

    курсовая работа [1,1 M], добавлен 01.02.2013

  • Задачи на элементы теории вероятности и математической статистики. Решение систем линейных уравнений методом Крамера; методом Гаусса. Закон распределения дискретной случайной величены. Построение выпуклого многоугольника, заданного системой неравенств.

    контрольная работа [96,1 K], добавлен 12.09.2008

  • Составление математической модели задачи. Определение всевозможных способов распила 5-метровых бревен на брусья 1,5, 2,4, 3,2 в отношении 1:2:3 так, чтобы минимизировать общую величину отходов. Решение задачи линейного программирования симплекс-методом.

    задача [26,1 K], добавлен 27.11.2015

  • Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.

    курсовая работа [160,5 K], добавлен 23.12.2010

  • Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.

    практическая работа [46,1 K], добавлен 06.06.2011

  • Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.

    контрольная работа [551,9 K], добавлен 27.08.2009

  • Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.

    лабораторная работа [4,9 M], добавлен 06.12.2011

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа [23,5 K], добавлен 12.06.2011

  • Создание математической модели движения шарика, подброшенного вертикально вверх, от начала падения до удара о землю. Компьютерная реализация математической модели в среде электронных таблиц. Определение влияния изменения скорости на дальность падения.

    контрольная работа [1,7 M], добавлен 09.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.