История и развитие начертательной геометрии

Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 29.04.2018
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

История и развитие начертательной геометрии

Майорова К.А.

Начертательная геометрия - учебная дисциплина, которая является основополагающим предметом при подготовке высококвалифицированного специалиста. начертательная геометрия плоскость ортогональный

Как бы многогранно не была деятельность человека, требования, предъявляемые к форме и содержанию изображений весьма различны. Изображение должно обладать не только достаточной наглядностью, но и в первую очередь, геометрически равноценно оригиналу, оно должно давать полную геометрическую и размерную характеристику изображаемого предмета. Этому требованию должен отвечать, например, любой машиностроительный чертеж. К изображению могут быть предъявлены оба указанных условия одновременно.

В настоящие время, средства машинной графики используются во многих областях проектирования и производства.

Инженерное образование базируется на знании инженерной графики, которое является фундаментом в создании технической документации. Предпосылки же инженерной графики основаны на положениях начертательной геометрии.

Геометрия развивалась вместе с такими науками, как математика, физика, механика, а также изобразительное искусство.

Размещено на http://www.allbest.ru/

Потребность в построении изображений по законам геометрии, возникла из практических задач строительства сооружений, укреплений, пирамид, а на позднем этапе - из запросов машиностроения и техники.

Основателем геометрии в Греции считают финикиянина Фалеса Милетского, который основал школу геометров, положившая начало научной геометрии. Ученику Фалеса Пифагору Самосскому (около 580-500гг. до н.э.)принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон (427-347гг. до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. А "Начала" Евклида - первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии.

"Золотым веком" греческой геометрии называют эпоху Архимеда (287-195 гг. до н.э.), Эрастофена (275-195гг. до н.э.), Аполлония Пергского (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Трактатом о конических сечениях обессмертил свое имя Аполлоний. А трудами последнего, можно сказать, завершается классическая геометрия.

Расцвет классической культуры в средние века сменился застоем. Глубокий кризис затянулся до эпохи Возрождения.

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии возникает новый период развития. Начинает бурно развиваться архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе.

Размещено на http://www.allbest.ru/

Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.) - он перенес принципы живописной перспективы на пластическое изображение в виде рельефа. Итальянский теоретик искусств Леон Баттиста Альберти (1404-1472гг.) обогатил художественно-технический опыт мастеров-профессионалов теоретической разработкой основ перспективы, впервые упоминает о построении теней, Пиетра-делла-Франческа (1406-1492гг.)- рассматривал вопросы линейной перспективы, гениальный итальянский художник, ученый и инженер Леонардо да Винчи (1452-1519гг.).

Первые идеи об ортогональном проецировании пространственных фигур на плоскость высказывались еще задолго до Монжа в XVI веке немецким математиком и художником Альбрехтом Дюрером (1471 -1528), который разработал метод ортогонального изображения конических сечений и некоторых пространственных кривых.

Зарождение аналитической геометрии связано с появлением метода координат. Французские математики Ферма (1601-1665гг.) и Декарт (1596-1650гг.) дали общие схемы аналитической функциональной зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона (1642-1727гг.)в области бесконечно малых создал новую ветвь геометрии - дифференциальную.

Аналитические и дифференциальные методы сложны в применении. Именно поэтому появилась еще одна ветвь геометрии -проективная, в основу которой положен метод проектирования, где нет понятий о числе и величине. Основоположниками этого направления следует считать французских математиков Понселе, Шаля, Мебиуса.

Ламберт (1728-1777гг.) применил метод перспективы к графическому решению задач элементарной геометрии, используя свойства афинного соответствия (афинная геометрия). Ламберт решал и обратную задачу - реконструирование объекта по его чертежу, выполненному в центральной проекции.

Размещено на http://www.allbest.ru/

Французский инженер Фрезье (1682-1773гг.) объединил работы предшественников в труде "Теория и практика разрезки камней и деревянных конструкций" (1738-39гг.), им были решены задачи построения конических сечений по усложненным данным.

К концу XYII столетия был накоплен достаточный практический опыт и появилась необходимость в научном обосновании методов начертательной геометрии, так как начавшееся к тому времени бурное развитие промышленности тормозилось отсутствием общей теории построения чертежа. Эту теорию создал в конце XYIII века политический деятель французской революции и ученый Гаспар Монж. В 1798 году он опубликовал свой труд «Начертательная геометрия», в котором теоретически обосновывались правила выполнения

ортогонального (прямоугольного) чертежа. Гаспара Монжа справедливо считают основоположником начертательной геометрии. Его учение в основном сохранилось и до нашего времени. Влюбленный в свое дело - начертательную геометрию, Монж писал: "Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума, - что большинству людей представляется утомительным и скучным занятием".Методы Монжа не были противоположны анализу, а были его дополнением

связанным с практическими потребностями инженерного дела. Впервые ученый предложил рассматривать плоский чертеж в двух проекциях, как результат совмещения изображенной фигуры в одной плоскости - комплексный чертеж или эпюр Монжа.

В работе Г. Монжа "Начертательная геометрия"("Geometric Descriptive"), изданной в 1798г., решались задачи:

Применение теории геометрических преобразований.

Рассмотрение некоторых вопросов теории проекций с числовыми отметками.

Подробное исследование кривых линий и поверхностей, в частности применение вспомогательных плоскостей и сфер при построении линии пересечения поверхностей.

Дальнейшее развитие начертательная геометрия получила в трудах многих ученых. Наиболее полное изложение идей Монжа по ортогональным проекциям дал Г. Шрейбер (1799-1871гг.), написавший "Учебник по начертательной геометрии" (по Монжу). Он обогатил начертательную геометрию изложением ее на проективной основе и разработал теорию теней и сечений кривых поверхностей. Обоснование теории аксонометрии дал Вейсбах, технические примеры применения аксонометрии показали братья Мейер.

Размещено на http://www.allbest.ru/

Развивая теорию аксонометрии, профессор Академии изобразительных искусств и Строительной академии в Берлине Карл Польке (1810-1876гг.) в 1853г. открыл основную теорему аксонометрии. Доказательство этой теоремы в 1864г. вывел немецкий геометр Г.А. Шварц. Обобщенная теорема аксонометрии стала называться теоремой Польке - Шварца. Простое доказательство этой теоремы дал в 1917г. профессор Московского университета А.К. Власов.

Московский геометр Н.А. Глаголев продолжил работы этого направления, он доказал, что теорема Польке - Шварца есть предельный случай более общей теоремы о параллельно-перспективном расположении двух тетраэдров. Привлекают работы австрийского геометра Эрвина Круппа, получившие развитие в трудах русских ученых Н.А. Глаголева, Н.Ф. Четверухина.

Размещено на http://www.allbest.ru/

Н.Ф. Четверухин заведовал кафедрами высшей математики и начертательной геометрии в ряде вузов Москвы. Основные труды по проективной геометрии и теории геометрических построений. Написал работы: "Вопросы методологии и методики геометрических построений в школьном курсе геометрии" (М., 1946), "Чертежи пространственных фигур в курсе геометрии" (М., 1958) и др. Заслуженый деятель науки РСФСР (1962).

Основоположник начертательной геометрии в России, выдающийся ученый конца XIX в., профессор Курдюмов В.И. наиболее полно разработал все разделы начертательной геометрии "Без воображения невозможно никакое серьезное творчество..." Эти слова можно считать лейтмотивом всей научной и педагогической деятельности В.И. Курдюмова. Он вошел в историю как ученый с европейским именем в области начертательной геометрии, теории оснований сооружений, фундаментов и строительных материалов.

В середине XIX века зарождается и получает развитие начертательная геометрия многих измерений - многомерная геометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в связи с проблемами физико-химического анализа многокомпонентных структур (сплавов, растворов), состоящих из большого числа элементов. Вместо точек за основные элементы принимаются различные геометрические образы и строится бесчисленное множество плоских геометрических систем (системы параллельных отрезков, векторов, окружностей и т.д.).

К началу XX века относится зарождение векторно - моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Развитие начертательной геометрии в нашей стране шло самобытными путями, его можно разделить на три периода. I период - до XIX века (Р.Санников, И.П. Кулибин, Д.В. Ухтомский, М.Ф. Казаков, В.И. Баженов и др.), II период - от начала XIX века до 1917 года. Впервые курс начертательной геометрии в 1810 году прочитан в Петербургском институте корпуса инженеров путей сообщения французским инженером К.И. Потье. Перевел курс на русский язык помощник Потье по институту Я.. А.. Севастьянов (1796-1849 гг.). IIIпериод - советский.

В общем можно сказать, что начертательная геометрия проделала многотысячелетний путь от рисунка на песке, от древнеегипетской ортогональной живописи до современных систем автоматизированного проектирования, трехмерного моделирования и анимации.

СПИСОК ЛИТЕРАТУРЫ

1. Гордон В.О., Семенцов-Огиевский М.А. Курс начертательной геометрии. Учебник. - М.: Наука, 1988

2. Г. Монж Начертательная геометрия./ Комментарии и редакция

3. Д.И. Каргина.- М.: Изд-во АН СССР, 1974.-с.291.

4. Иванов Г.С. Теоретические основы начертательной геометрии. - М. Машиностроение, 1998. - 157с.

5. Интернет. Википедия

6. Курдюмов, В. И. Курс начертательной геометрии «Проекции ортогональные» Издательство Петербургского института инженеров путей сообщения, СПб, 1985

Размещено на Allbest.ru

...

Подобные документы

  • Понятие начертательной геометрии, ее сущность и особенности, предмет и методы изучения, история зарождения и развития. Цели и задачи начертательной геометрии, ее структура и элементы. Прямая и варианты ее расположения, разновидности и методы определения

    лекция [451,3 K], добавлен 21.02.2009

  • Основные положения теоретического курса по начертательной геометрии. Эпюры - примеры построения, а также подробные описания методов решения. Описание решения типовых задач по каждой теме начертательной геометрии и их основные теоретические положения.

    учебное пособие [8,1 M], добавлен 16.10.2011

  • Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.

    учебное пособие [3,6 M], добавлен 07.01.2012

  • Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.

    дипломная работа [4,4 M], добавлен 05.03.2011

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат [38,5 K], добавлен 16.01.2010

  • Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.

    дипломная работа [1,8 M], добавлен 21.08.2011

  • Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.

    дипломная работа [245,5 K], добавлен 13.02.2010

  • Биография Н.И. Лобачевского. Деятельность Лобачевского по организации печатного университетского органа и его попытки основать при университете Научное общество. История признания геометрии Н.И. Лобачевского в России. Появление неевклидовой геометрии.

    дипломная работа [1,2 M], добавлен 14.09.2011

  • Геометрия как научная дисциплина, причины и предпосылки, история и основные этапы ее возникновения и развития. Евклид как основатель геометрии, его вклад в развитие новой науки, характеристика, содержание ее главных разделов - планиметрии и стереометрии.

    презентация [55,3 K], добавлен 28.12.2010

  • Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

    реферат [319,1 K], добавлен 06.03.2009

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа [4,1 M], добавлен 15.03.2011

  • Происхождение и основные понятия сферической геометрии. Принципы и особенности дистанционного обучения. Процесс дистанционного обучения. Основные модели дистанционного обучения. Роль преподавателя. Дистанционный курс по "Сферической геометрии".

    дипломная работа [2,8 M], добавлен 23.12.2007

  • Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.

    презентация [527,9 K], добавлен 23.03.2011

  • Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.

    презентация [1,9 M], добавлен 06.05.2010

  • Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.

    дипломная работа [884,6 K], добавлен 24.06.2015

  • Научно-методические достоинства учебного пособия по геометрии Погорелова. Анализ недостатков учебника "Геометрия 7-9". Структура основных взаимосвязей в системе определений и теорем в курсе геометрии. Подготовка учителя к доказательству теорем на уроке.

    дипломная работа [321,5 K], добавлен 11.01.2011

  • Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.

    дипломная работа [1,3 M], добавлен 10.09.2009

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Понятие и свойства многогранников. Геометрическое моделирование как неотъемлемая часть современного математического образования. Применение изображений пространственных фигур в преподавании геометрии, роль наглядных средств при изучении многогранников.

    дипломная работа [4,7 M], добавлен 28.10.2012

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа [2,0 M], добавлен 29.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.