О структуре AP-многообразия на распределении контактного метрического многообразия

Проведение исследования контактного метрического многообразия со структурой произведения специального вида. Изучение понятия внутренней связности и определение тензора кривизны Схоутена. Характеристика коэффициентов внутренней линейной связности.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 17.07.2018
Размер файла 904,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

О структуре ap-многообразия на распределении контактного метрического многообразия

Галаев Сергей Васильевич

В статье вводится понятие почти AP-многообразия - почти контактного метрического многообразия со структурой почти произведения специального вида. Почти AP-многообразие с интегрируемой структурой почти произведения названо в статье AP-многообразием. Находятся условия, при которых почти AP-многообразие, естественным образом определяемое на распределении контактного метрического многообразия, является AP-многообразием.

Похожие материалы

· О некоторых свойствах продолженных почти ap-структур

· Связность над распределением в главном расслоенном пространстве допустимых реперов

· О геометрии распределения косимплектического би-метрического многообразия

· Об одном примере почти контактной пара-гиперкомплексной структуры

· N-продолженные связности на распределениях субримановых многообразий

Введение

Почти AP-многообразие является обобщением SQS-многообразия, определенного в работе [41]. В свою очередь, SQS-многообразия - это квази-сасакиевы многообразия (QS-многообразия), удовлетворяющие дополнительным условиям. QS-многообразия определены в статье Блэра [51]. Там же приводятся основные примеры QS-многообразий. В частности, в качестве примера QS-многообразия рассматривалось произведение сасакиева и кэлерова многообразий. Значительное внимание квази-сасакиевым многообразиям уделено в работах В.Ф. Кириченко и его учеников [42-47]. Среди квази-сасакиевых структур , таких, что , , , наиболее близко примыкают к сасакиевым структурам SQS-структуры. Интересным примером SQS-структур являются структуры (продолженные почти контактные метрические структуры), естественным образом возникающие на распределениях нулевой кривизны сасакиевых многообразий. Продолженные почти контактные метрические структуры введены в работах [14-17]. Изучению обобщений продолженных почти контактных метрических структур посвящены работы [1, 2, 4, 6, 7, 10, 11, 22-28, 31, 33]. В результате исследования продолженных структур получены результаты, имеющие аналоги в геометрии касательных и кокасательных расслоений [48-66]. Наиболее интересными продолженными структурами являются структуры, задаваемые на распределениях нулевой кривизны, т.е., на распределениях почти контактных метрических структур с нулевым тензором кривизны Схоутена. Понятие тензора кривизны оснащенного неголономного многообразия введено Схоутеном и ван Кампеном [65]. Впоследствии, заданный Схоутеном и ван Кампеном тензор был назван В.В. Вагнером [19, 20] тензором Схоутена. Существуют два основных способа введения тензора Схоутена в геометрию почти контактных метрических многообразий. Тензор Схоутена может быть определен как тензор кривизны внутренней связности (связности в неголономном многообразии) [5, 14, 21, 22, 25, 27]. Альтернативным способом задания тензора Схоутена является выделение трансверсальной составляющей у тензора кривизны некоторой связности (отличной от связности Леви-Чивита), возникающей на многообразии с почти контактной метрической структурой. При этом термин «тензор Схоутена» не употребляется [66]. Тензор Схоутена мы называем тензором кривизны распределения D многообразия M с почти контактной метрической структурой . В работе [20] Вагнер вводит понятие тензора кривизны (тензора кривизны Вагнера) оснащенного неголономного многообразия коразмерности 1. В случае контактного метрического многообразия тензор кривизны Вагнера также может быть описан как тензор кривизны связности (отличной от связности, изучаемой в работе [66]) в векторном расслоении . Задание связности Вагнера сводится к продолжению внутренней связности до связности (N-продолженной связности) [6, 21, 22, 25, 28, 29, 31, 32, 35, 37, 40, 67-69]) в векторном расслоении с помощью эндоморфизма , имеющего специальное строение.

Предлагаемая работа устроена следующим образом. Во втором разделе на почти контактном метрическом многообразии Mвводится понятие внутренней связности, определяется тензор кривизны Схоутена. и изучаются его свойства. В третьем разделе определяется почти AP-многообразие и изучаются его простейшие свойства. На распределении D многообразия M с контактной метрической структурой определяется продолженная почти контактная метрическая структура. Доказывается, что продолженная структура является структурой AP-многообразия тогда и только тогда, когда исходное многообразие - контактное метрическое многообразие с распределением нулевой кривизны.

Почти контактные метрические многообразия специального вида

Пусть M - гладкое многообразие нечетной размерности , - модуль гладких векторных полей на M. Все многообразия, тензорные поля и другие геометрические объекты предполагаются гладкими класса . Предположим, что на M задана почти контактная метрическая структура , где - тензор типа (1,1), называемый структурным эндоморфизмом или допустимой почти комплексной структурой, и - вектор и ковектор, называемые, соответственно, структурным вектором и контактной формой, g - (псевдо) риманова метрика. При этом выполняются следующие условия:

,

,

,

, где .

Гладкое распределение называется распределением почти контактной структуры.

В качестве следствия условий 1) - 4) получаем:

, 6) , 7) , .

Если , где , вектор однозначно определяется из условий , .

Кососимметрический тензор называется фундаментальной формой структуры. Почти контактная метрическая структура называется контактной метрической структурой, если выполняется равенство . Гладкое распределение , ортогональное распределению D, называется оснащением распределения D. Имеет место разложение .

Многообразие Сасаки - контактное метрическое пространство, удовлетворяющее дополнительному условию , где - тензор Нейенхейса эндоморфизма . Выполнение условия означает, что пространство Сасаки является нормальным пространством. Символы будем использовать для обозначения модуля сечений распределения

Предположим, что , . Хорошо известно, что ядро формы является интегрируемым распределением, которое в дальнейшем будем обозначать символом K. Пусть , , , - проекторы, определяемые разложением , где , а L - ортогональное ему распределение в D.

Имеет место

Предложение 1. Распределение интегрируемо.

Доказательство. Пусть . Покажем, что . Имеем, . Отсюда следует, . Далее, для произвольного получаем: . Таким образом, , что и доказывает предложение.

Многообразие M с почти контактной метрической структурой назовем почти AP-многообразием, если выполняются следующие два условия:

1. Распределение L инвариантно относительно действия эндоморфизма ;

2. Имеет место равенство

.

Если, при этом, распределение - интегрируемо, то почти AP-многообразие будем называть AP-многообразием.

Квази-сасакиево многообразие, являющееся одновременно AP-многообразием, называется [41] специальным квази-сасакиевым многообразием (SQS-многообразием).

Используя интегрируемость распределения K, определим на многообразии M адаптированную карту

,

полагая , . Мы здесь использовали обозначение .

Пусть и - адаптированные карты, тогда получаем следующие формулы преобразования координат:

.

Векторные поля линейно независимы и в области определения соответствующей карты порождают распределение . Таким образом, мы имеем на многообразии M неголономное поле базисов и соответствующее ему поле кобазисов

.

Непосредственно проверяется, что в случае AP-многообразия , .

В случае интегрируемости распределения , будем требовать дополнительно выполнение равенства .

Пример AP-многообразия. Пусть , - стандартный базис арифметического пространства. Определим на M 1-форму , полагая, . Очевидно, что , , где . Структуру риманова многообразия на M определим, считая базис ортонормированным. И, наконец, положим , , , , .

Тензор кривизны Схоутена

Тензорное поле t типа (p,q), заданное на почти контактном метрическом многообразии, назовем допустимым (к распределению D), если t обращается в нуль каждый раз, когда среди его аргументов встречаются или .

Внутренней линейной связностью [3, 5, 8, 9, 30, 34, 36] на многообразии с почти контактной структурой называется отображение

,

удовлетворяющее следующим условиям:

,

,

где - модуль допустимых векторных полей.

Внутренняя связность определяет дифференцирования допустимых тензорных полей. Так, например, для допустимой почти комплексной структуры выполняется равенство

.

Коэффициенты внутренней линейной связности определяются из соотношения .

Кручением внутренней связности назовем допустимое тензорное поле

.

Внутреннюю связность будем называть симметричной, если ее кручение равно нулю. В случае симметричности внутренней связности в адаптированных координатах получаем:

, или, .

Допустимое тензорное поле, определяемое равенством

,

где Q=I-P, названо Вагнером [20] тензором кривизны Схоутена. Тензор Схоутена будем называть тензором кривизны внутренней связности. Координатное представление тензора Схоутена в адаптированных координатах имеет вид:

.

Для почти AP-многообразия выполняется равенство

.

Тензор кривизны внутренней связности возникает в результате альтернирования вторых ковариантных производных:

.

Назовем тензор кривизны внутренней связности тензором кривизны распределения D, а распределение D, в случае обращения в нуль тензора Схоутена, - распределением нулевой кривизны.

Аналогом связности Леви-Чивита является внутренняя симметричная связность такая, что , где g - допустимое тензорное поле, определяемое метрическим тензором исходной почти контактной метрической структуры. Назовем связность внутренней метрической связностью. Известно, что внутренняя симметричная метрическая связность существует и определена единственным образом. Ее коэффициенты задаются равенствами

.

Введем в рассмотрение допустимые тензорные поля, определяемые равенствами ,

,

, .

В адаптированных координатах получаем:

,

, .

Будем использовать следующие обозначения для связности и коэффициентов связности Леви-Чивита тензора , . В результате непосредственных вычислений убеждаемся в справедливости следующего предложения.

Предложение 2. Коэффициенты связности Леви-Чивита почти AP-многообразия в адаптированных координатах имеют вид:

,

,

,

,

где .

Пусть - тензор кривизны связности Леви-Чивита контактного метрического пространства. Используя результаты предложения 2, и проводя вычисления в адаптированных координатах, убеждаемся в справедливости следующего предложения.

Предложение 3. Тензор кривизны связности Леви-Чивита связан с тензором кривизны Схоутена следующим соотношением:

Здесь - допустимое тензорное поле с компонентами .

Прежде чем переходить к обсуждению свойств тензора Схоутена, введем понятия N-связности [21, 29, 31] и ассоциированной связности , естественным образом связанных с данной внутренней связностью.

Пусть на многообразии M с почти контактной структурой и внутренней линейной связностью задан эндоморфизм .

N-связность определим как единственную связность на многообразии M, удовлетворяющую следующим условиям:

.

Кручение и кривизна N-связности определяются, соответственно, следующем образом:

,

.

N-связность с нулевым эндоморфизмом N будем называть ассоциированной связностью с внутренней связностью и обозначать . Для кривизны и кручения ассоциированной связности выполняются следующие равенства:

, , .

Таким образом, получаем , если .

Предложение 4. Почти AP-многообразие с распределением нулевой кривизны является K-контактным пространством.

Доказательство. Пусть - внутренняя метрическая связность: , . Дифференцируя последнее равенство повторно и альтернируя полученный результат, получаем: . Учитывая невырожденность формы , заключаем, что равенство влечет равенство . Что и доказывает предложение.

С учетом равенства (1) получаем:

Теорема 1. Для почти AP-многообразия обращение в нуль тензора кривизны Схоутена влечет равенство .

Введем на распределении D почти контактного метрического многообразия структуру гладкого многообразия следующим образом. Поставим в соответствие каждой адаптированной карте многообразия M сверхкарту на распределении D, полагая, что , где - координаты допустимого вектора в базисе . Задание внутренней связности влечет разложение распределения , где - естественная проекция, в прямую сумму вида , где VD - вертикальное распределение на тотальном пространстве D, HD - горизонтальное распределение, порождаемое векторными полями , где , - коэффициенты внутренней связности.

Пусть, далее, - поле допустимого тензора типа (1,1). N-продолженной связностью [21, 29, 31] назовем связность в векторном расслоении , определяемую разложением , где , , , - вертикальный лифт. Относительно базиса поле получает следующее координатное представление: . Если не оговорено противное, будем считать, что . В этом случае .

Формы определяют поле кобазисов, сопряженное к полю базисов .

Проводя необходимые вычисления, получаем следующие структурные уравнения:

,

,

.

Всякому векторному полю , заданному на многообразии M, обычным образом соответствует его горизонтальный лифт , при этом, тогда и только тогда, когда - допустимое векторное поле: . Справедливость следующей теоремы вытекает из полученных выше структурных уравнений. метрический тензор кривизна линейный

Теорема 2. Пусть - внутренняя симметричная связность с тензором кривизны Схоутена . Тогда, для всех и имеют место следующие равенства

,

, , .

Определим на распределении D многообразия Сасаки M продолженную почти контактную метрическую структуру , полагая

,

,

, , , , .

Теорема 3. Почти контактная метрическая структура , является структурой AP-многообразия тогда и только тогда, когда тензор кривизны исходного контактного метрического многообразия равен нулю.

Список литературы

1. Букушева А.В. Об алгебре Ли преобразований продолженной почти контактной метрической структуры // Современные научные исследования и инновации. 2015. № 4-1(48). С. 11-13.

2. Букушева А.В. Об инфинитезимальных изометриях продолженных почти контактных метрических структур // Современные научные исследования и инновации. 2015. № 5-1 (49). С. 23-24.

3. Букушева А.В. Об инфинитезимальных эндоморфизмах допустимой почти симплектической структуры // Современные научные исследования и инновации. 2015. № 7-1(51). С. 14-16.

4. Букушева А.В. Об одном примере гиперкэлеровой структуры на контактных кэлеровых распределениях // Современные научные исследования и инновации. 2015. № 8-1 (52). С. 21-22.

5. Букушева А.В. О геометрии контактных метрических пространств с ц-связностью // Научные ведомости Белгородского государственного университета. Серия: Математика. Физика. №17(214) Вып. 40. 2015. С. 20-24.

6. Букушева А.В. О некоторых классах продолженных почти параконтактных метрических структур // Сборник научных статей международной конференции "Ломоносовские чтения на Алтае: фундаментальные проблемы науки и образования", Барнаул, 20-24 октября 2015. - Барнаул : Изд-во Алтайского ун-та, 2015. С. 471-474.

7. Букушева А.В. О некоторых классах распределений с финслеровой структурой // Математика. Механика. 2012. №.14. С. 13-16.

8. Букушева А.В. О некоторых классах почти параконтактных метрических многообразий // Математика. Механика. 2013. №.15. С. 8-11.

9. Букушева А.В. Когомологии оснащенных распределений // Математика. Механика. 2014. №.16. С.15-18.

10. Букушева А.В. Слоения на распределениях с финслеровой метрикой // Известия Саратовского университета. Новая серия. Серия. Математика. Механика. Информатика. 2014. Т.14. №.3. С.247-251.

11. Букушева А.В. Нелинейные связности и внутренние полупульверизации на распределении почти контактной метрической структуры // Математика. Механика. 2015. №.17. С. 6-8.

12. Букушева А.В. Финслерово пространство с метрикой Бервальда-Моора как обобщение метрического пространства невырожденных поличисел // Математика. Механика. 2011. №.13. С. 6-10.

13. Букушева А.В. О пространстве над алгеброй поличисел с метрикой Бервальда-Моора // Гиперкомплексные числа в геометрии и физике. 2011. Т. 8. № 15-1. С. 99-103.

14. Букушева А.В., Галаев С.В. Связности над распределением и геодезические пульверизации // Известия высших учебных заведений. Математика. 2013. №4. С. 10-18.

15. Букушева А.В., Галаев С.В. Почти контактные метрические структуры, определяемые связностью над распределением с допустимой финслеровой метрикой // Известия Саратовского университета. Новая серия. Серия. Математика. Механика. Информатика. 2012. Т. 12. №. 3. С. 17-22.

16. Букушева А.В., Галаев С.В., Иванченко И.П. О почти контактных метрических структурах, определяемых связностью над распределением с финслеровой метрикой // Механика. Математика. 2011. №13. С.10-14.

17. Букушева А.В., Галаев С.В. О допустимой келеровой структуре на касательном расслоении к неголономному многообразию // Математика. Механика. 2005. №7. С. 12-14.

18. Букушева А.В., Галаев С.В. Условие интегрируемости метрики Бервальда-Моора // Механика. Математика. 2010. №12. С. 10-13.

19. Вагнер В.В. Геометрическая интерпретация движения неголономных динамических систем // Тр. семинара по векторному и тензорному анализу. 1941. №5. С. 301-327.

20. Вагнер В.В. Геометрия (n-1)-мерного неголономного многообразия в n-мерном пространстве, Тр. семинара по векторному и тензорному анализу, вып. 5, 173-255 (1941).

21. Галаев С.В. N-продолженные симплектические связности в почти контактных метрических пространствах // Известия высших учебных заведений. Математика. 2017. №3. С. 15-23.

22. Галаев С.В. Геометрическая интерпретация тензора кривизны Вагнера для случая многообразия с контактной метрической структурой // Сибирский математический журнал. 2016. Т. 57. № 3(337). С. 632-640.

23. Галаев С.В. Гладкие распределения с допустимой гиперкомплексной псевдо-эрмитовой структурой // Вестник Башкирского университета. 2016. Т. 21. №3. С. 551-555.

24. Галаев С.В. Допустимые гиперкомплексные структуры на распределениях сасакиевых многообразий // Известия Саратовского университета. Новая серия. Серия. Математика. Механика. Информатика. 2016. Т. 16. №3. С. 263-272.

25. Галаев С.В. Обобщенный тензор кривизны Вагнера почти контактных метрических пространств // Чебышевский сборник. 2016. Т. 17. №3(59). С. 53-63.

26. Галаев С.В. Обобщенные би-контактные структуры на распределениях сасакиевых многообразий // Фундаментальные и прикладные исследования в современном мире. 2016. №15-1. С. 57-59.

27. Галаев С.В. О контактных метрических пространствах с распределением нулевой кривизны // Сборник научных статей международной конференции "Ломоносовские чтения на Алтае: фундаментальные проблемы науки и образования", Барнаул, 20-24 октября 2015. - Барнаул : Изд-во Алтайского ун-та, 2015. С. 479-482.

28. Галаев С.В., Шевцова Ю.В. Почти контактные метрические структуры, определяемые симплектической связностью над распределением // Известия Саратовского университета. Новая серия. Серия. Математика. Механика. Информатика. 2015. Т. 15. №2. С. 136-141.

29. Галаев С.В. Почти контактные метрические пространства с N-связностью // Известия Саратовского университета. Новая серия. Серия. Математика. Механика. Информатика. 2015. Т. 15. №3. С. 258-263.

30. Галаев С.В. Связности, совместимые с допустимой почти симплектической структурой // Современные научные исследования и инновации. 2015. № 7-1(51). С. 17-19.

31. Галаев С.В. Почти контактные метрические структуры, определяемые N-продолженной связностью // Математические заметки СВФУ. 2015. Т. 22. №1. С. 25-34.

32. Галаев С.В. О некоторых классах N-продолженных связностей // Математика. Механика. 2015. №.17. С. 12-15.

33. Галаев С.В., Шевцова Ю.В. Почти контактные кэлеровы пространства, определяемые симплектической связностью над распределением // Математика. Механика. 2015. №17. С. 19-21.

34. Галаев С.В. Почти контактные кэлеровы многообразия постоянной голоморфной секционной кривизны // Известия высших учебных заведений. Математика. 2014. №8. С. 42-52.

35. Галаев С.В., Гохман А.В. Внутренняя связность, ассоциированная с вполне интегрируемым лежандровым слоением // Математика. Механика. 2014. №16. С. 22-25.

36. Галаев С.В. Внутренняя геометрия метрических почти контактных многообразий // Известия Саратовского университета. Новая серия. Серия. Математика. Механика. Информатика. 2012. Т. 12. №1. С. 16-22.

37. Галаев С.В., Гохман А.В. Внутренние неголономные связности, совместимые с допустимой почти симплектической структурой // Механика. Математика. 2009. №11. С. 15-18.

38. Галаев С.В., Гохман А.В. Неголономные почти симплектические многообразия с присоединенной связностью // Математика. Механика. 2002. №4. С. 31-33.

39. Галаев С.В., Гохман А.В. Почти симплектические связности на неголономном многообразии // Математика. Механика. 2001. №3. С. 28-31.

40. Галаев С.В., Гохман А.В. Обобщенные гамильтоновы системы на многообразиях со связностью // Математика. Механика. 2000. №2. С. 16-19.

41. Галаев С.В. Примеры многообразий со специальной квази-сасакиевой структурой // Новая наука: Теоретический и практический взгляд. 2016. №10-2. С. 31-33.

42. Кириченко В. Ф., Рустанов А.Р. Дифференциальная геометрия квази-сасакиевых многообразий // Матем. сб. 2002. 193:8. С. 71-100.

43. Кириченко В. Ф., Полькина Е. А. Контактная форма Ли и конциркулярная геометрия локально конформно квази-сасакиевых многообразий // Матем. заметки. 2016. 99:1. С. 42-54.

44. Кириченко В.Ф., Аристархова А.В. Контактно-автодуальная геометрия 5-мерных квази-сасакиевых многообразий // Матем. заметки. 2011. 90:5. С. 643-658

45. Кириченко В.Ф., Полькина Е.А. Критерий конциркулярной подвижности квази-сасакиевых многообразий // Матем. заметки. 2009. 86:3. С. 380-388.

46. Кириченко В. Ф. Методы обобщенной эрмитовой геометрии в теории почти контактных структур, Итоги науки и техн. Сер. Пробл. геом., 18, ВИНИТИ, М., 1986. С. 25-71.

47. Кириченко В. Ф., Борисовский И. П. Интегральные многообразия контактных распределений // Матем. сб. 1998. 189:12. С. 119-134.

48. Banos B., Swann A. Potentials for hyper-Keahler metrics with torsion // Classical Quantum Gravity. 2004. Vol. 21, no. 13. P. 3127-3135.

49. Barberis M. L. A survey on hyper-Keahler with torsion geometry // Rev. Un. Mat. Argentina. 2009. Vol. 49, no. 2. P. 121-131.

50. Bedulli L., Gori A., Podest`a F. Homogeneous hyper-complex structures and the Joyce's construction // Differential Geom. Appl. 2011. Vol. 29, no. 4. P. 547-554.

51. Blair D.E. Contact manifolds in Riemannian Geometry. Lecture Notes in Math. 509. Springer-Verlag, Berlin, New York. 1976.

52. Boyer Charles P., Galicki Krzystof, Matzeu Paola On eta-Einstein Sasakian geometry. Comm. Math. Phys. 2006. Vol. 262. no 1. P. 77-208.

53. Boyer C. P., Galicki K., Mann B. M. Hypercomplex structures from 3-Sasakian structures // J. Reine Angew. Math. 1998. Vol. 501. P. 115-141.

54. Bukusheva A.V. Nonholonomic manifolds with Berwald-Moor metric // Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis. 2015. Т. 31. №1. С. 27-34.

55. Galaev S.V. Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure // Siberian Mathematical Journal. 2016. Т. 57. №3. С. 498-504.

56. Galaev S.V. Intrinsic geometry of almost contact Kahlerian manifolds // Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis. 2015. Vol. 31. №1. P. 35-46.

57. Capria M. M., Salamon S. M. Yang-Mills fields on quaternionic spaces // Nonlinearity. 1988. Vol. 1, no. 4. P. 517-530.

58. Fino A., Grantcharov G. Properties of manifolds with skew-symmetric torsion and special holonomy // Adv. Math. 2004. Vol. 189, no. 2. P. 439-450.

59. Gauduchon P. Hermitian connections and Dirac operators // Boll. Un. Mat. Ital. B (7). 1997. Vol. 11, no. 2, suppl. P. 257-288.

60. Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold // J. Reine Angew. Math. 1971. no. 250. P.124-129.

61. Munteanu M.I. Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr // J. Math. 2008. no. 5. P. 43-59.

62. Musso E., Tricerri F. Riemannian metrics on tangent bundles // Ann. Mat. Pura Appl. 1988. 150(4). P. 1-19.

63. Obata M. Affine connections in a quaternion manifold and transformations preserving the structure // J. Math. Soc. Japan. 1957. Vol. 9. P. 406-416.

64. Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds // Tohoku Math. J. 1958. no. 10. P. 338-354.

65. Schouten J., van Kampen E. Zur Einbettungs-und Krьmmungstheorie nichtholonomer Gebilde // Math. Ann. 1930. no. 103. P. 752-783.

66. Vezzoni L. Connections on contact manifolds and contact twistor spaces // Israel J. Math. 2010. no. 178. P. 253-267.

67. Галаев С.В. О почти контактных метрических пространствах с метрической N-связностью // Современные научные исследования и инновации. 2015. № 4-1(48). С.14-16.

68. Галаев С.В. О метрической N-продолженной связности на почти контактном метрическом пространстве // Современные научные исследования и инновации. 2015. № 5-1(49). С. 20-22.

69. Галаев С.В. О продолжении внутренней связности неголономного многообразия с финслеровой метрикой // Механика. Математика. 2011. №13. С.26-29.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.

    курсовая работа [481,4 K], добавлен 28.04.2011

  • Понятие матрицы достижимости и связности. Операция удаления вершины из графа. Алгоритм выделения компонент сильной связности. Разработка и листинг программы на языке Turbo Pascal, осуществляющей вычисление матрицы достижимости по заданному алгоритму.

    курсовая работа [584,3 K], добавлен 26.04.2011

  • Непрерывные отображения топологических пространств. Связность топологических пространств. Компактность топологических пространств. Связность непрерывных отображений. Замкнутые отображения. Связь связности и послойной связности.

    курсовая работа [140,7 K], добавлен 08.08.2007

  • Введение в алгебраическую геометрию. Определения аффинных многообразий: фиксированное алгебраически замкнутое поле; аффинное пространство, топология Зорисского на аффинной прямой; нётерово топологическое пространство. Понятия проективных многообразий.

    контрольная работа [204,1 K], добавлен 15.05.2012

  • Понятие метрического и топологического пространства. Расстояние между множествами. Диаметр множества. Непрерывные отображения. Гомеоморфизм. Вектор-функция скалярного аргумента. Понятия пути и кривой. Гладкая и регулярная кривая, замена параметра.

    курс лекций [134,0 K], добавлен 02.06.2013

  • Определение и структурные уравнения аффинной связности. Экспоненциальные отображения в теории пространств. Ковариантное дифференцирование и классические формулировки. Аффинное пространство n измерений. Точечно-векторная аксиоматика аффинного пространства.

    курсовая работа [167,8 K], добавлен 23.10.2012

  • Ориентированные и неориентированные графы: общая характеристика, специальные вершины и ребра, полустепени вершин, матрицы смежности, инцидентности, достижимости, связности. Числовые характеристики каждого графа, обход в глубину и в ширину, базис циклов.

    курсовая работа [225,5 K], добавлен 14.05.2012

  • Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.

    презентация [150,3 K], добавлен 16.01.2015

  • Теорема о промежуточных значениях; точка отрезка, в которой функция обращается в ноль. Первая и вторая теоремы Вейерштрасса. Теорема Кантора, равномерно-непрерывная функция на промежутке. Функционалы непрерывные на компакте метрического пространства.

    задача [141,7 K], добавлен 28.12.2009

  • Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.

    реферат [375,9 K], добавлен 04.12.2011

  • Минимальное остовное дерево связного взвешенного графа и его нахождение с помощью алгоритмов. Описание алгоритма Краскала, возможность строить дерево одновременно для нескольких компонент связности. Пример работы алгоритма Краскала, код программы.

    курсовая работа [192,5 K], добавлен 27.03.2011

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа [253,6 K], добавлен 05.01.2015

  • Аппроксимация функции y = f(x) линейной функцией y = a1 + a2x. Логарифмирование заданных значений. Расчет коэффициентов корреляции и детерминированности. Построение графика зависимости и линии тренда. Числовые характеристики коэффициентов уравнения.

    курсовая работа [954,7 K], добавлен 10.01.2015

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа [192,3 K], добавлен 24.11.2009

  • Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.

    контрольная работа [380,9 K], добавлен 05.04.2015

  • Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.

    контрольная работа [88,2 K], добавлен 19.01.2014

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Понятие и назначение определителей, их общая характеристика, методика вычисления и свойства. Алгебра матриц. Системы линейных уравнений и их решение. Векторная алгебра, ее закономерности и принципы. Свойства и приложения векторного произведения.

    контрольная работа [996,2 K], добавлен 04.01.2012

  • Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.

    контрольная работа [97,5 K], добавлен 31.10.2010

  • Задача о малых колебаниях. Вычисление коэффициентов с помощью быстрого преобразования Фурье. Дискретный подход к вычислению коэффициентов. Вычисление методом Лежандра-Гаусса. Расчет узлов и весовых коэффициентов. Массивно-параллельный расчёт амплитуд.

    курсовая работа [2,1 M], добавлен 20.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.