Анализ модели Вольтерра "Хищник-жертва"

Рассмотрение и анализ сущности популяционной динамики – одного из разделов математического моделирования. Определение коэффициентов колебательного режима системы. Исследование модели В. Вольтерра, как первого примера модели в математической экологии.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 31.07.2018
Размер файла 131,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Южный федеральный университет

Анализ модели Вольтерра «Хищник-жертва»

Физико-математические науки

№29-1

Нечипуренко Анна Александровна, студент

21.12.2014

Аннотация

В данной статье производится анализ системы «Хищник-жертва» при различных значениях параметров на основе компьютерного моделирования в программной среде Mathcad14.

Mathcad, модель Вольтера, хищник, жертва, популяции.

Популяционная динамика - один из разделов математического моделирования. Интересен он тем, что имеет конкретные приложения в биологии, экологии, демографии, экономике. В данном разделе имеется несколько базовых моделей, одна из которых - модель «Хищник - жертва» - рассматривается в данной статье.

Первым примером модели в математической экологии стала модель, предложенная В. Вольтеррой. Именно он впервые рассмотрел модель взаимоотношения между хищником и жертвой.

Рассмотрим постановку задачи. Пусть имеется два вида животных, один из которых пожирает другой (хищники и жертвы). При этом принимаются следующие предположения: пищевые ресурсы жертвы не ограничены и в связи с этим в отсутствии хищника популяция жертвы возрастает по экспоненциальному закону, в то время как хищники, отделенные от своих жертв, постепенно умирают с голоду так же по экспоненциальному закону. Как только хищники и жертвы начинают обитать в непосредственной близости друг от друга, изменения численности их популяций становятся взаимосвязанными. В этом случае, очевидно, относительный прирост численности жертв будет зависеть от размеров популяции хищников, и наоборот.

В данной модели считается, что все хищники (и все жертвы) находятся в одинаковых условиях. При этом пищевые ресурсы жертв неограниченны, а хищники питаются исключительно жертвами. Обе популяции живут на ограниченной территории и не взаимодействуют с любыми другими популяциями, также отсутствуют любые другие факторы, способные повлиять на численность популяций.

Сама математическая модель «хищник - жертва» состоит из пары дифференциальных уравнений, которые описывают динамику популяций хищников и жертв в её простейшем случае, когда имеется одна популяция хищников и одна - жертв. Модель характеризуется колебаниями в размерах обеих популяций, причём пик количества хищников немного отстаёт от пика количества жертв. С данной моделью можно ознакомиться во многих трудах по популяционной динамике или математическому моделированию. Она достаточно широко освещена и проанализирована математическими методами. Однако формулы не всегда могут дать очевидное представление о происходящем процессе.

Интересно узнать, как именно в данной модели зависит динамика популяций от начальных параметров и насколько это соответствует действительности и здравому смыслу, причём увидеть это графически, не прибегая к сложным расчётам. Для этой цели на основе модели Вольтерра была создана программа в среде Mathcad14.

Для начала проверим модель на соответствие реальным условиям. Для этого рассмотрим вырожденные случаи, когда в данных условиях обитает только одна из популяций. Теоретически было показано, что при отсутствии хищников популяция жертвы неограниченно возрастает во времени, а популяция хищника в отсутствии жертвы вымирает, что вообще говоря соответствует модели и реальной ситуации (при указанной постановке задачи). динамика математический моделирование вольтерр

Полученные результаты отражают теоретические: хищники постепенно вымирают (Рис.1), а численность жертвы неограниченно возрастает (Рис.2).

Рис.1 Зависимость числа хищников от времени при отсутствии жертвы

Рис.2 Зависимость числа жертв от времени при отсутствии хищников

Как видно, в данных случаях система соответствует математической модели.

Рассмотрим, как ведёт себя система при различных начальных параметрах. Пусть имеются две популяции - львы и антилопы - хищники и жертвы соответственно, и заданы начальные показатели. Тогда получаем следующие результаты (Рис.3):

Таблица 1. Коэффициенты колебательного режима системы

Параметр

Львы

Антилопы

Начальная численность

30

100

Прирост/Смертность

0,02

2

Межвидовое взаимодействие

0,001

0,01

Рис.3 Система при значении параметров из Таблицы 1

Проанализируем полученные данные, исходя из графиков. При первоначальном возрастании популяции антилоп наблюдается прирост числа хищников. Заметим, что пик возрастания популяции хищников наблюдается позже, на спаде популяции жертв, что вполне соответствует реальным представлениям и математической модели. Действительно, рост числа антилоп означает увеличение пищевых ресурсов для львов, что влечёт за собой рост их численности. Далее активное поедание львами антилоп ведёт к стремительному уменьшению численности жертв, что неудивительно, учитывая аппетит хищника, а точнее частоту поедания хищниками жертв. Постепенное снижение численности хищника приводит к ситуации, когда популяция жертвы оказывается в благоприятных для роста условиях. Далее ситуация повторяется с определённым периодом. Делаем вывод, что данные условия не подходят для гармоничного развития особей, так как влекут резкие спады популяции жертв и резкие возрастания обеих популяций.

Положим теперь начальную численность хищника равную 200 особей при сохранении остальных параметров (Рис.4).

Таблица 2. Коэффициенты колебательного режима системы

Параметр

Львы

Антилопы

Начальная численность

200

100

Прирост/Смертность

0,02

2

Межвидовое взаимодействие

0,001

0,01

Рис.4 Система при значении параметров из Таблицы 2

Теперь колебания системы происходят более естественно. При данных предположениях система существует вполне гармонично, отсутствуют резкие возрастания и убывания количества численности в обеих популяциях. Делаем вывод, что при данных параметрах обе популяции развиваются достаточно равномерно для совместного обитания на одной территории.

Зададим начальную численность хищника равную 100 особей, численность жертв 200 при сохранении остальных параметров(Рис.5).

Таблица 3. Коэффициенты колебательного режима системы

Параметр

Львы

Антилопы

Начальная численность

100

200

Прирост/Смертность

0,02

2

Межвидовое взаимодействие

0,001

0,01

Рис.5 Система при значении параметров из Таблицы 3

В данном случае ситуация близка к первой рассмотренной ситуации. Заметим, что при взаимном увеличении популяций переходы от возрастания к убыванию популяции жертвы стали более плавными, а популяция хищника сохраняется в отсутствии жертв при более высоком численном значении. Делаем вывод, что при близком отношении одной популяции к другой их взаимодействие происходит более гармонично, если конкретные начальные численности популяций достаточно большие.

Рассмотрим изменение других параметров системы. Пусть начальные численности соответствуют второму случаю. Увеличим коэффициент размножения жертв (Рис.6).

Таблица 4. Коэффициенты колебательного режима системы

Параметр

Львы

Антилопы

Начальная численность

200

100

Прирост/Смертность

0,02

4

Межвидовое взаимодействие

0,001

0,01

Рис.6 Система при значении параметров из Таблицы 4

Сравним данный результат с результатом, полученным во втором случае. В этом случае наблюдается более быстрый прирост жертвы. При этом и хищник, и жертва ведут себя так, как в первом случае, что объяснялось невысокой численностью популяций. При таком взаимодействии обе популяции достигают пика со значениями, намного большими, чем во втором случае.

Теперь увеличим коэффициент прироста хищников (Рис.7).

Таблица 5. Коэффициенты колебательного режима системы

Параметр

Львы

Антилопы

Начальная численность

200

100

Прирост/Смертность

0,04

2

Межвидовое взаимодействие

0,001

0,01

Рис.7 Система при значении параметров из Таблицы 5

Сравним результаты аналогично. В этом случае общая характеристика системы остаётся прежней, за исключением изменения периода. Как и следовало ожидать, период стал меньше, что объясняется быстрым уменьшением популяции хищника в отсутствии жертв.

И, наконец, изменим коэффициент межвидового взаимодействия. Для начала увеличим частоту поедания хищниками жертв:

Таблица 6. Коэффициенты колебательного режима системы

Параметр

Львы

Антилопы

Начальная численность

200

100

Прирост/Смертность

0,02

2

Межвидовое взаимодействие

0,004

0,01

Рис.8 Система при значении параметров из Таблицы 6

Так как хищник поедают жертву чаще, то максимум численности его популяции увеличился по сравнению со вторым случаем, а также уменьшилась разность между максимальным и минимальным значениями численности популяций. Период колебаний системы остался прежним.

И теперь уменьшим частоту поедания хищниками жертв:

Таблица 7. Коэффициенты колебательного режима системы

Параметр

Львы

Антилопы

Начальная численность

200

100

Прирост/Смертность

0,02

2

Межвидовое взаимодействие

0,0001

0,01

Рис.9 Система при значении параметров из Таблицы 7

Теперь хищник поедают жертву реже, максимум численности его популяции уменьшился по сравнению со вторым случаем, а максимум численности популяции жертвы увеличился, причём в 10 раз. Отсюда следует, что при данных условиях популяция жертвы имеет большую свободу в смысле размножения, ведь хищнику хватает меньшей массы, чтобы насытиться. Также уменьшилась разность между максимальным и минимальным значениями численности популяций.

При попытке моделирования сложных процессов в природе или обществе, так или иначе, возникает вопрос о корректности модели. Естественно, что при моделировании происходит упрощение процесса, пренебрежение некоторыми второстепенными деталями. С другой стороны, существует опасность упростить модель слишком сильно, выкинув при этом вместе с несущественными важные черты явления. Для того чтобы избежать данной ситуации, необходимо перед моделированием изучить предметную область, в которой используется данная модель, исследовать все её характеристики и параметры, а главное, выделить те черты, которые являются наиболее значимыми. Процесс должен иметь естественное описание, интуитивно понятное, совпадающее в основных моментах с теоретической моделью.

Рассмотренная в данной работе модель обладает рядом существенных недостатков. Например, предположение о неограниченных ресурсах для жертвы, отсутствие сторонних факторов, влияющих на смертность обоих видов и т.д. Все эти предположения не отражают реальную ситуацию. Однако, несмотря на все недостатки, модель получила широкое распространение во многих областях, даже далёких от экологии. Это можно объяснить тем, что система «хищник-жертва» даёт общее представление именно о взаимодействии видов. Взаимодействие с окружающей средой и прочими факторами можно описать другими моделями и анализировать их в совокупности.

Взаимоотношения типа «хищник-жертва» - существенная черта различных видов жизнедеятельности, в которых происходит столкновение двух взаимодействующих между собой сторон. Данная модель имеет место не только в экологии, но и в экономике, политике и других сферах деятельности. Например, одно из направлений, касающихся экономики, это анализ рынка труда, с учётом имеющихся потенциальных работников и вакантных рабочих мест. Данная тема была бы интересным продолжением работы над моделью «хищник-жертва».

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.