Развитие математики в XX веке

Основные направления развития математики в XX веке: топология, риманова геометрия, теория вероятности. Новые области применения математики в связи с развитием компьютерных технологий. Использование сведений о развитии математики в начальной школе.

Рубрика Математика
Предмет Математика
Вид курсовая работа
Язык русский
Прислал(а) incognito
Дата добавления 20.09.2018
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

    реферат [38,2 K], добавлен 09.10.2008

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

  • Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.

    презентация [1,6 M], добавлен 16.05.2012

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат [32,6 K], добавлен 06.09.2006

  • Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.

    реферат [32,4 K], добавлен 10.05.2011

  • Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.

    презентация [124,5 K], добавлен 17.05.2012

  • Характеристика экономического и культурного развития России в середине XVIII в. Новые задачи математики, обусловленные развитием техники и естествознанием. Развитие основных понятий математического анализа. Дифференциальное и интегральное исчисление.

    автореферат [27,2 K], добавлен 29.05.2010

  • Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.

    курсовая работа [347,2 K], добавлен 12.09.2009

  • Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.

    презентация [1,8 M], добавлен 17.12.2010

  • Характер давньогрецької математики та джерела. Характер давньогрецької математики та її джерела. Виділення математики в самостійну теоретичну науку. Формулювання теорем про площі і обсяги складних фігур і тіл. Досягнення олександрійських математиків.

    курсовая работа [186,2 K], добавлен 22.11.2011

  • Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация [2,2 M], добавлен 20.09.2015

  • Введение понятия переменной величины. Развитие интегральных и дифференциальных методов. Математическое обоснование движения планет. Закон всемирного тяготения Ньютона. Научная школа Лейбница. Теория приливов и отливов. Создание математического анализа.

    презентация [252,6 K], добавлен 20.09.2015

  • Визначення поняття математики через призму іонійського раціоналізму. Основні властивості правильних багатокутників і правильних багатогранників. Загальна характеристика внеску в розвиток головних засад сучасної математики видатних давньогрецьких вчених.

    реферат [91,5 K], добавлен 15.02.2010

  • Новые информационно-коммуникационные технологии в современном школьном образовании. Применение программных обеспечений при срезе и контроля знаний по теме "Показательная функция". Роль использования компьютерных технологий в преподавании математики.

    курсовая работа [23,0 K], добавлен 05.03.2008

  • Классические каноны в живописи, связанные с математикой: изображение человека, расположение предметов, соотношение мелких и крупных предметов. Роль математики в профессии юриста. Обоснование необходимости знаний математики для врачей и воспитателей.

    презентация [2,3 M], добавлен 21.12.2014

  • В условиях развития технологий возрос спрос на людей, обладающих нестандартным мышлением, умеющих ставить и решать новые задачи. Введение в топологию. Теорема Жордана о замкнутой кривой. Проблема четырёх красок. Самоподобные геометрические объекты.

    дипломная работа [549,0 K], добавлен 29.06.2008

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат [27,6 K], добавлен 11.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.