Наслідки з теореми про вписаний кут

Засвоєння учнями змісту наслідків із теореми про вписаний кут та способів їх доведення. Розробка правильної рівності для градусних мір кутів. Дослідження медіани прямокутного трикутника, проведеної до гіпотенузи. Особливість знаходження меншого катета.

Рубрика Математика
Вид конспект урока
Язык украинский
Дата добавления 05.09.2018
Размер файла 109,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема. Наслідки з теореми про вписаний кут. Розв'язування задач

Мета: домогтися засвоєння учнями змісту наслідків із теореми про вписаний кут та способів їх доведення. Сформувати вміння:

· відтворювати зміст вивчених тверджень;

· знаходити на рисунку об'єкти, властивість яких описується цими наслідками;

· використовувати вивчені твердження під час розв'язування задач на обчислення кутів у колі.

Тип уроку: засвоєння нових знань.

Наочність та обладнання: конспект «Кути в колі».

Хід уроку

I. Організаційний етап

II. Перевірка домашнього завдання

Перевірку опанування учнями способів дій, вивчених на попередніх уроках, можна провести у формі самостійної роботи.

Самостійна робота

Варіант 1

1. Вершини трикутника ABC ділять коло у відношенні 2:3:4. Знайдіть кути цього трикутника.

2. За рисунком знайдіть кут х (О -- центр кола), б = 21°, в = 49°.

Варіант 2

1. Вершини трикутника ABC ділять коло у відношенні 1:3:5. Знайдіть кути цього трикутника.

2. За рисунком знайдіть кут х (О -- центр кола), б = 19°, в = 47°.

III. Формулювання мети і завдань уроку

Задача. Три футболісти пробивають штрафні удари по воротах із точок А, В і С (рис. 1). У кого з них кут обстрілу воріт найбільший?

Під час обговорення розв'язання задачі необхідно перейти до її математичної моделі та сформулювати проблему (як порівняти вписані кути, що спираються на одну й ту саму дугу?)

Зрозуміло, що розв'язання цієї проблеми у вигляді деякого правильного твердження для вписаних кутів із наступним доведенням цього твердження, а також оволодіння способами застосування цього твердження і є основною метою уроку. кут градусний прямокутний гіпотенуза

IV. Актуалізація опорних знань

Фронтальна бесіда

1. Вершина кута лежить на колі. Чи обов'язково цей кут є вписаним у коло?

2. Сторони кута перетинають коло. Чи обов'язково цей кут є вписаним у коло? Чи може цей кут бути центральним кутом?

3. АВ і ВС -- хорди кола із центром у точці О. Що можна сказати про кут ABC і АОС? Запишіть правильну рівність для градусних мір цих кутів.

4. Точки А і В лежать на колі. Вписаний кут АСВ дорівнює 90°. Чим є хорда АВ?

V. Засвоєння знань

План вивчення матеріалу

1. Наслідок 1.

2. Наслідок 2.

3. Наслідок 3.

4*. Додаткові наслідки. Кути в колі.

Зміст та послідовність вивчення наслідків теореми про вписаний кут логічно обумовлені: наслідок 1 (про вписані кути, що спираються на одну й ту саму дугу) ґрунтується безпосередньо на твердженні теореми про вписаний кут. Доведення наслідку 2 (про вписаний кут, що спирається на півколо) можна розглядати як особливий випадок наслідку 1 (коли дуга кола має градусну міру 180°). Що стосується наслідку 3 (про центр кола, описаного навколо прямокутного трикутника, та довжину медіани прямокутного трикутника, проведеної до гіпотенузи), то доведення цього твердження стає очевидним під час розгляду рисунка до наслідку 2 (див. рис. 64 підручника). Після доведення наслідку 3 бажано розглянути цікавий факт для прямокутного трикутника (медіана прямокутного трикутника, проведена до гіпотенузи, ділить прямий кут на кути, що дорівнюють гострим кутам прямокутного трикутника), який бажано зафіксувати в зошитах учнів як опорний факт. Зміст основних наслідків з теореми про вписаний кут міститься в конспекті «Кути в колі».

Конспект 9

Кути в колі

AOB -- центральний кут,

AOB = АВ

Центральний кут вимірюється дугою, на яку він спирається

ABC -- вписаний кут,

ABC = AC = AOC

Вписаний кут вимірюється половиною дуги, на яку він спирається, і дорівнює половині центрального кута, що спирається на ту саму дугу

ABC = ADC = AKC

Вписані кути, які спираються на одну й ту саму дугу, рівні між собою

ABC = ADC = 90°

Вписаний кут, який спирається на діаметр, дорівнює 90°

MA -- дотична, MB -- січна

AMB = MnB

AB і CD -- хорди

AMC = (AC + DB)

VI. Формування первинних умінь

Виконання усних вправ

1. Чи можуть два вписані кути дорівнювати один одному, якщо вони не спираються на одну дугу?

2. Чи можуть вписані кути ABC і АВ, С не дорівнювати один одному? Наведіть приклад.

3. Чи може: а) кут, сторони якого перетинають коло в кінцях діаметра, бути гострим; б) кут із вершиною на колі, сторони якого перетинають коло в кінцях діаметра, бути гострим?

4. Дано: АВ -- діаметр, АС = AD (рис. 2). Доведіть, що 1 = 2.

5. Дано: АВ -- діаметр, АС -- хорда (рис. 3). Доведіть, що BOC = 2BAC.

6. Дано: О -- центр кола, АС = АО (рис. 4). Знайдіть кут ВАС.

Виконання письмових вправ

1. Трикутник ABC вписаний у коло, центр якого лежить на відрізку АВ. а) Знайдіть кут В, якщо A = 65°. б) Знайдіть медіану, проведену з вершини С, якщо АВ = 12 см.

2. За даними рисунка 5 знайдіть кут х (точка О -- центр кола).

3. На колі позначено точки А, В і С, причому АС -- діаметр кола, BCA = 60°, ВС = 4 см. Знайдіть радіус кола.

4* (опорна). Кут між хордою і дотичною до кола, проведеною через кінець хорди, вимірюється половиною дуги, яка лежить усередині цього кута. Доведіть.

5* (опорна), а) Дуги кола, які містяться між двома паралельними хордами, рівні. Доведіть, б) Рівні хорди стягують дуги з однаковою градусною мірою, і навпаки: дуги з однаковою градусною мірою стягуються рівними хордами. Доведіть.

VII. Підсумки уроку

Знайдіть на рисунку 6 помилки.

VIII. Домашнє завдання

Вивчити зміст наслідків. Розв'язати задачі.

1. Гіпотенуза прямокутного трикутника дорівнює 10. Чи може висота, проведена до неї, дорівнювати 6? Відповідь обґрунтуйте.

2. За даними рисунка знайдіть кут х (точка О -- центр кола).

3. Знайдіть менший катет прямокутного трикутника, якщо його медіана дорівнює 9 см і утворює з гіпотенузою кут 60°.

Размещено на Allbest.ru

...

Подобные документы

  • Історія створення і різні формулювання теореми Піфагора як актуальної математичної задачі, спроби докази теореми. Визначення теореми Фалеса про пропорційні відрізки, її рішення. Місце теореми Вієта та формули Герона в сучасному шкільному курсі геометрії.

    курсовая работа [1,5 M], добавлен 25.05.2019

  • Вивчення теорем Чеви та Менелая на площині та в просторі, доведення нетривіальних наслідків цих теорем та розв’язання задач за їх допомогою. Застосування Теореми Менелая при доведенні теорем (наприклад, теорем Дезарга, Паппа, Паскаля, Гаусса та інших).

    дипломная работа [4,0 M], добавлен 12.08.2010

  • Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.

    реферат [88,5 K], добавлен 02.02.2010

  • Вивчення рівняння з однією невідомою довільного степеня та способів знаходження коренів таких рівнянь. Доведення основної теореми алгебри. Огляд способу Ньютона встановлення меж дійсних коренів алгебраїчних рівнянь. Відокремлення коренів методом Штурма.

    курсовая работа [1,1 M], добавлен 06.10.2012

  • Методи перевірки чисел на простоту: критерій Люка та його теореми, їх доведення. Теорема Поклінгтона та її леми. Метод Маурера - швидкий алгоритм генерації доведених простих чисел, близьких до випадкового та доведення Д. Коувером і Дж. Куіскуотером.

    лекция [138,8 K], добавлен 08.02.2011

  • Характеристика сферичної геометрії як галузі математики. Зв'язок між величинами сторін та кутів прямокутного сферичного трикутника. Використання теорем косинусів та синусів. Значення стереографічной сітки Вульфа. Розвиток поняття про геометричний простір.

    курсовая работа [1,2 M], добавлен 29.11.2014

  • Поняття диференційованості, похідної, диференціала. Теореми про диференційованість деяких відображень. Частинні похідні вищих порядків та матриця Якобі. Достатні умови диференційованості. Теореми про "скінченні прирости". Диференціали вищих порядків.

    курсовая работа [1,8 M], добавлен 08.10.2011

  • Отримання аналогів теореми порівняння Колмогорова для класу функцій, що задаються обмеженнями на несиметричні норми старших похідних. Випадок класів, які задаються обмеженнями на декілька похідних. Означення екстремальної функції, її властивості.

    дипломная работа [1,4 M], добавлен 11.06.2017

  • Дослідження системи з відомим типом крапок спокою. Знаходження першого інтеграла системи, умови його існування. Застосування теореми про еквівалентність диференціальних систем. Визначення вложимої системи, умови вложимості. Поняття функції, що відбиває.

    курсовая работа [115,3 K], добавлен 14.01.2011

  • Короткий нарис життя, особистісного та творчого становлення відомого французького математика П'єра Ферма. Історія розробок та формування Великої теореми Ферма, її призначення та сфери використання. Доказ першої та другої леми, доведення для показника 4.

    реферат [17,0 K], добавлен 06.10.2009

  • Пошук об’єму призми, циліндра та конуса, діаметру кулі. Розрахунок площі прямокутника основи призми по одній стороні та діагоналі, площі трикутника в основі піраміди за формулою Герона. Радіус основи циліндра та одночасно - катет прямокутного трикутника.

    контрольная работа [502,7 K], добавлен 07.07.2011

  • Перетворення звичайного дробу в десятковий за допомогою конгруенцій. Захоплення Йоганна Бернуллі, дільники реп’юнітів і представлення звичайних дробів десятковим, довжина періоду дробу з простим знаменником. Доведення теореми Ферма для заданих значень.

    курсовая работа [481,8 K], добавлен 14.04.2015

  • Великий математик П’єр Ферма. Історія виникнення теореми Ферма-Ойлера. Способи її доведення Лагранжем та Д. Цагиром. Інволютивність перетворення трійки натуральних чисел. Єдиність та кількість представлення простого числа у вигляді суми двох квадратів.

    курсовая работа [39,4 K], добавлен 08.05.2014

  • Теорема Піфагора - важливий інструмент геометричних обчислень, її простота, значення; історичні відомості. Теорема Піфагора на площині та у просторі, її стереометричний аналог; цілочислові прямокутні трикутники. Доведення теореми, класифікація задач.

    курсовая работа [2,5 M], добавлен 16.05.2011

  • Означення модуля неперервності та його властивості. Дослідження поведінки найкращих наближень неперервної функції алгебраїчними многочленами на базі властивостей введених Діціаном і Тотіка. Вирішення оберненої задачі. Узагальнення теореми Джексона.

    курсовая работа [1016,1 K], добавлен 09.07.2015

  • Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.

    курсовая работа [79,8 K], добавлен 27.07.2015

  • Поняття нормованого простору: лінійний простір, оператор, безперервний та обмежений оператор. Простір функцій. Інтеграл Лебега-Стилтьеса. Інтерполяція в просторах сумуємих функцій. Теореми Марцинкевича та Рисса-Торина. Простір сумуємих послідовностей.

    курсовая работа [407,3 K], добавлен 16.01.2011

  • Поняття правильної піраміди, її висоти і радіусу описаного навколо неї прямого конуса. Особливості комбінацій геометричних тіл: твірної конуса, розміщення центра його основи та висоти. Властивості правильного трикутника і розрахунок об'єму тіла обертання.

    контрольная работа [454,7 K], добавлен 07.07.2011

  • Розрахунок площі осьового перерізу конуса як площі трикутника і радіусу основи і висоти циліндра як діаметра кола його основи. Обчислення кутів при гіпотенузі та катетів в рівнобедреному прямокутному трикутнику. Визначення центру кулі і площі її перерізу.

    контрольная работа [302,0 K], добавлен 07.07.2011

  • Дослідження традицій японської храмової геометрії у період Едо. Історичні аспекти японської храмової математики та сангаку, основні причини їх виникнення. Японська математика - васан. Сучасні завдання сангаку. Теореми японської храмової геометрії.

    научная работа [997,7 K], добавлен 15.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.