Середня лінія трикутника та її властивості
Розвиток уміння учнів розв’язувати задачі на застосування теореми про середню лінію трикутника. Формулювання теореми Фалеса. Вимір на практиці потрібних відстаней, не вимірюючи їх безпосередньо. Особливість обчислення протяжності заболоченого місця.
Рубрика | Математика |
Вид | конспект урока |
Язык | украинский |
Дата добавления | 02.09.2018 |
Размер файла | 161,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ГЕОМЕТРІЯ
Тема: Середня лінія трикутника, її властивості
МЕТА: Дати означення середньої лінії трикутника, довести теорему про її властивість, розвивати уміння учнів розв'язувати задачі на застосування теореми про середню лінію. Виховувати наполегливість у навчальній праці та інтерес до геометрії. теорема трикутник фалес відстань
ХІД УРОКУ
І. Перевірка домашнього завдання. Актуалізація опорних знань.
1. Запитання по домашньому завданню (перевіряємо № 255(1), заповнити пропущені місця)
Дано: кут, АА1 =А1А2 = А2 А3=
А В1 В2 В3 В4 = А3А4, А1В1//А2 В2//А3 В3//А4 В4,
АВ4 - В2В3 = 9см
А1 Знайти: АВ3
А2 Розвязок : 1)за теоремою Фалеса
А3 АВ1=В1В2 = В2В3 = В3В4;
А4 2) АВ3 = 3В2В3, АВ4 = 4В2В3;
3) АВ4 - В2В3=4В2В3 - В2В3 = 3В2В3 = 9см;
4) АВ3 = 9см.
Відповідь: АВ3 = 9см.
2. Сформулювати теорему Фалеса ( якщо паралельні прямі, які перетинають сторони кута, відтинають на одній його стороні рівні відрізки, то вони відтинають рівні відрізки і на другій його стороні)
3. Де ми застосовуємо цю теорему? ( при поділі відрізка на рівні частини)
ІІ. Засвоєння нових знань.
1) Практична робота.
Побудуйте довільний трикутник. Поділіть дві сторони пополам. Сполучіть середини цих сторін. Цей відрізок називається середньою лінією трикутника.
Знайдіть означення середньої лінії трикутника у підручнику (стор. 46).
Виміряйте цей відрізок і третю сторону трикутника. Порівняйте їх.
Який висновок можна зробити? Хто сформулює теорему про середню лінію трикутника? (Знайти стор. 46)
2)Оголошення і запис теми уроку.
3)Формулювання теореми про середню лінію трикутника і доведення її
В Дано:?АВС, МN - середня лінія ?АВС.
Довести: МN // АС; МN = АС.
М N
А С Доведення:1) АМ = МВ, через точку М
D проведемо пряму, паралельну АС. За теоремою Фалеса, вона перетинає відрізок ВС в його середині N, тобто містить середню лінію МN. Отже, МN // АС.
2) проведемо пряму ND // АВ. За теоремою Фалеса пряма ND ділить відрізок АС пополам: АD = DС = АС. За побудовою чотирикутник АМND - паралелограм. Отже, МN = АС.
4) Повторення доведення теореми учнями.
ІІІ. Закріплення вивченого матеріалу.
1) Усні вправи за малюнками ( використовуючи презентацію)
Назвіть трикутники в яких проведено середню лінію, та знайдіть її, якщо це можливо.
А) Чи є відрізок FE середньою лінією ?MNP? FE = ?
Б) Чи є відрізок KL середньою лінією ?АВС? KL = ?
В) Чи є відрізок FE середньою лінією ?АВС? FE = ?
Г) Чи є відрізок АВ середньою лінією ?PLM? АВ = ?
2)Розв'язування задач № 245(1),№ 250(1), № 252(1).
Задач № 245(1).
В Дано: ?АВС, АВ =8см, ВС = 5см, АС = 7см,
МК, МР, РК - середні лінії
М Р Знайти: МК, МР, РК.
Розв'язок: МК, МР, РК - середні
А С лінії ?АВС, то МК // ВС, МК = ВС =2,5см,
К МР // АС, МР = АС = 3,5см,
РК // АВ, РК = АВ = 4см.
Відповідь: МК = 2,5см, МР = 3,5см, РК = 4см.повнити пропущені місця
Задача № 250 (1)(виконують самостійно, заповнити пропущені місця)
В Дано: АВС, НК = 3см, МК = 5см,
НМ = 6см, НК, МК, НМ - середні лінії
Н М
Знайти: Р?АВС
А С
К
Розв'язок: 1)за властивістю середньої лінії трикутника:МК = 1/2АВ, АВ = 2МК, НК = 1/2ВС, ВС =2НК, НМ = 1/2АС, АС = 2НМ;
3) Р?АВС = АВ + ВС + АС = 2МК + 2НК + 2НМ = 2( МК + НК + НМ) = 2Р?НМК
4) Р?АВС = 2(3 + 5 + 6) =28см
Відповідь: 28см.
Висновок: периметр даного трикутника вдвічі більший за периметр трикутника, сторони якого є середніми лініями даного трикутника.
Задача № 252(1).
В Р С Дано: АВСД - паралелограм, М - середина
АВ, Р - середина ВС, К - середина СД,
М МР = 11см, РК = 5см
К Знайти: АС, ВД
Розвязок: 1) Розглянемо ?АВС,
А Д (МР - середня лінія за умовою),
тоді МР // АС, АС = 2МР = 22см;
2) Розглянемо ?ВСД, РК - середня лінія за умовою, тоді РК // ВД,
ВД = 2РК =10см.
Відповідь: АС = 22см, ВД = 10см.
3)Властивість середньої лінії трикутника можна застосовувати на практиці. (Чи можна на практиці виміряти потрібні відстані, не вимірюючи їх безпосередньо?)
Задача. На мал. зображено заболочене місце, як виміряти його ширину, довжину?
Розв'язання: 1) Побудуємо трикутник, за вершину вибравши будь - яку точку, а основа трикутника повинна проходити через най товщу (най довшу) частину заболоченого місця.
2) Які лінії ще треба провести і що треба виміряти, щоб дізнатися відстань між пунктами Р та F і протяжність заболоченого місця? ( розв'язується усно)
3)Виміряти ОР, ОF знайти середини цих відрізків, виміряти довжину середньої лінії трикутника РОF.
4)Обчислити відстань між пунктами Р та F, як основу трикутника використовуючи властивість середньої лінії.
5)Виміряти відстані РМ і NF. Протяжність заболоченого місця обчислити за формулою МN = PF - (PM + NF)
( Домашнє завдання: знайти ще один спосіб розв'язування задачі)
4)Додаткова задача
Як побудувати трикутник, якщо дано середини його сторін?
Розв'язок:
1)Сполучаємо дані точки.
2) Отримали трикутник АВС.
3)Через кожну з вершин проводимо прямі, паралельні до сторін утвореного трикутника (через точку А пряму паралельну ВС і тд).
4) Позначимо точки перетину прямих М,Р,К.
5) Трикутник МРК - шуканий.
ІV. Домашнє завдання: п.6; №№ 245(2),246(1), 250 (1), 252(2), додаткова задача.
V. Підсумок.
- Що нового дізнались на уроці?
Виставляю бали найбільш активним учням.
Література
1.М. І. Бурда, Н.А. Тарасенкова, підручник “Геометрія 8 клас”, видавництво “Зодіак - ЕКО”, 2008.
2. Г.М. Будняк, В.С. Фролова “Уроки геометрії у 8 класі” Посібник для вчителів. - Тернопіль: “Астон”, 2002.
3.Камінська-Фенюк Е. Е.Гімназія «Потенціал». “ Середня лінія трикутника і трапеції. Розв'язування задач практичного змісту”.
4.Євтух Т. А. Презентація уроку “Середня лінія трикутника” гімназія №31.
Размещено на Allbest.ru
...Подобные документы
Історія створення і різні формулювання теореми Піфагора як актуальної математичної задачі, спроби докази теореми. Визначення теореми Фалеса про пропорційні відрізки, її рішення. Місце теореми Вієта та формули Герона в сучасному шкільному курсі геометрії.
курсовая работа [1,5 M], добавлен 25.05.2019Вимоги до ставлення цілей викладання геометрії в загальноосвітній школі. Суть методу координат на площині та його основні задачі стосовно геометричних місць точок. Афінна система координат. Елементи використання на практиці важливих точок трикутника.
дипломная работа [1,4 M], добавлен 04.08.2013Означення та приклади застосування гармонічних функцій. Субгармонічні функції та їх деякі властивості. Розв’язок задачі Діріхле з використанням функції Гріна. Теореми зростання та спадання функції регулярної в нескінченній області (Фрагмена-Ліндельофа).
курсовая работа [349,0 K], добавлен 10.09.2013Вивчення теорем Чеви та Менелая на площині та в просторі, доведення нетривіальних наслідків цих теорем та розв’язання задач за їх допомогою. Застосування Теореми Менелая при доведенні теорем (наприклад, теорем Дезарга, Паппа, Паскаля, Гаусса та інших).
дипломная работа [4,0 M], добавлен 12.08.2010Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.
реферат [88,5 K], добавлен 02.02.2010Отримання аналогів теореми порівняння Колмогорова для класу функцій, що задаються обмеженнями на несиметричні норми старших похідних. Випадок класів, які задаються обмеженнями на декілька похідних. Означення екстремальної функції, її властивості.
дипломная работа [1,4 M], добавлен 11.06.2017Узагальнена теорема синусів. Деякі перетворення, пов'язані з теоремою Чеви. Вираження площі трикутника через радіуси вписаного круга і півпериметр. Залежність між радіусом вписаного кола і радіусами зовнівписаних кіл. Центр мас периметра трикутника.
курсовая работа [908,0 K], добавлен 29.03.2014Теореми про близькість розв'язку вихідної і усередненої системи на скінченому на нескінченому проміжках. Формулювання теорем про близькість розв'язків системи з повільними та швидкими змінними. Загальний прийом асимптотичного інтегрування системи.
курсовая работа [1005,3 K], добавлен 03.01.2014Основні поняття і теореми. Обчислення визначників методом зміни елементів, представлення їх у вигляді суми, виділення лінійних множників, методом рекурентних співвідношень, знижуючи їхній порядок за допомогою розкладання за елементами рядка або стовпця.
контрольная работа [137,9 K], добавлен 25.03.2011Пошук об’єму призми, циліндра та конуса, діаметру кулі. Розрахунок площі прямокутника основи призми по одній стороні та діагоналі, площі трикутника в основі піраміди за формулою Герона. Радіус основи циліндра та одночасно - катет прямокутного трикутника.
контрольная работа [502,7 K], добавлен 07.07.2011Площина як одне з основних понять геометрії, її розміщення у просторі. Поняття взаємно перпендикулярних площин. Огляд прикладів вирішення задачі на побудову двох паралельних площин. Теореми, що використовуються при розв’язанні позиційних задач на цю тему.
контрольная работа [451,5 K], добавлен 19.11.2014Прийоми розв’язання задач в першому і другому степені на Далекому Сході та Греції. Досягнення арабських математиків в області алгебраїчних рівнянь. Розв'язання похідного кубічного рівняння. Найвидатніші теореми про радикали вищих степенів, їх розв’язання.
курсовая работа [536,1 K], добавлен 23.02.2014Означення модуля неперервності та його властивості. Дослідження поведінки найкращих наближень неперервної функції алгебраїчними многочленами на базі властивостей введених Діціаном і Тотіка. Вирішення оберненої задачі. Узагальнення теореми Джексона.
курсовая работа [1016,1 K], добавлен 09.07.2015Теоретичне обґрунтування і засоби практичної реалізації основних понять сферичної геометрії. Застосування теореми косинусів для розв'язування стереометричних задач. Відстань між точкамии на земній кулі. Зв'язок між географічними і сферичними координатами.
курсовая работа [1,6 M], добавлен 02.03.2014Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.
реферат [113,9 K], добавлен 12.03.2011Частинні похідні та диференційованість функції: поняття та теореми. Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків. Інваріантність форми повного диференціала. Диференціювання неявної функції.
реферат [278,8 K], добавлен 02.05.2011Характеристика та поняття потрійного інтеграла, умови його існування та основні властивості. Особливості схеми побудови та обчислення потрійного інтегралу, його застосування для розв’язання рівнянь. Правило заміни змінних в потрійному інтегралі.
контрольная работа [400,3 K], добавлен 23.03.2011Поняття диференційованості, похідної, диференціала. Теореми про диференційованість деяких відображень. Частинні похідні вищих порядків та матриця Якобі. Достатні умови диференційованості. Теореми про "скінченні прирости". Диференціали вищих порядків.
курсовая работа [1,8 M], добавлен 08.10.2011Застосування конгруенцій: ознаки подільності, перевірка арифметичних дій, перетворення десяткового дробу у звичайний та навпаки, індекси. Вчені, що займалися питанням застосування конгруенцій. Основні теореми в теорії конгруенцій - Ейлера і Ферма.
курсовая работа [226,2 K], добавлен 04.06.2011Теорія межі послідовності й межі функції як один з розділів математичного аналізу. Поняття межі послідовності, огляд характерних прикладів обчислення меж послідовності з докладним розбором рішення, специфіка теореми Штольца й приклади її застосування.
курсовая работа [118,6 K], добавлен 17.01.2011