Модели негауссовых случайных блужданий с конечной дисперсией

Сущность задачи о случайных блужданиях. Статистические свойства временных рядов, представляющих собой фиксации логарифмических приращений цен акций и фондовых индексов. Применение моделей негауссовых случайных блужданий для описания реальной системы.

Рубрика Математика
Вид автореферат
Язык русский
Дата добавления 28.10.2018
Размер файла 308,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

На правах рукописи

01.04.02 - Теоретическая физика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата физико-математических наук

Модели негауссовых случайных блужданий с конечной дисперсией

ВИДОВ Павел Викторович

Москва, 2013 год

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт общей физики им. А.М. Прохорова Российской академии наук.

Научный руководитель: Доктор физико-математических наук, главный научный сотрудник ИОФ РАН

Романовский Михаил Юрьевич

Официальные оппоненты: Доктор физико-математических наук, заведующий теоретическим отделом ИОФ РАН

Гусейн-заде Намик Гусейнага оглы

Доктор физико-математических наук, профессор физического факультета МГУ

Чеботарев Александр Михайлович

Ведущая организация:

Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук, г. Москва.

Защита диссертации состоится “ “ __________ 2013 г. в 15 часов на заседании Диссертационного совета Д002.063.03 при Институте общей физики имени А.М. Прохорова РАН по адресу: 119991, Москва, ул. Вавилова, 38

С диссертацией можно ознакомиться в библиотеке Института общей физики имени А.М. Прохорова РАН.

Автореферат разослан “___”____________ 2013 г.

Ученый секретарь диссертационного совета Д002.063.03

Кандидат физико-математических наук Воляк Т.Б.

Общая характеристика работы

Актуальность темы

Случайные блуждания являются очень удобным инструментом для описания физических процессов, динамика которых имеет стохастическую природу. Случайные блуждания и диффузия, которые, по сути, являются эквивалентными процессами, исследуются уже более ста лет и являются краеугольным камнем теории стохастических процессов, которая находит применение в различных областях физики и математики, а также в социальных науках.

В последнее время все больший интерес вызывают исследования стохастических систем, не подчиняющихся Гауссовой статистике. Такие системы не подчиняются классической центральной предельной теореме (ЦПТ). Основной статистической особенностью таких систем является существенно более высокая вероятность возникновения экстремально больших флуктуаций. Зачастую в таких случаях вместо классической ЦПТ возникает ее обобщенная версия, в соответствии с которой распределение суммы независимых случайных величин описывается семейством устойчивых распределений, относящихся к более широкому классу - безгранично-делимых распределений. Негауссовские случайные блуждания наблюдаются, например, при транспорте зарядов на поверхности полупроводников [1] или в процессах диффузии в таких новых материалах, как, например, стекла Леви [2] и целом ряде других физических систем.

Необходимо отметить, что подобные процессы характерны и для большого количества нефизических систем. В частности, с ними можно столкнуться в биологических [3], социальных [4] и экономических системах, которые, безусловно, требуют тщательного исследования в условиях современного мира.

Экономические временные ряды, такие как изменения цен индексов, акций, производных инструментов или курсов валют, возникают в результате взаимодействия большого количества агентов - участников финансовых рынков и представляют собой хороший пример естественной сложной системы. Большинство используемых на практике финансовых моделей, описывающих динамику цен фондовых активов, основываются на представлениях о классическом гауссовом поведении случайного процесса. К таким моделям относятся базовые модели ценообразования опционов, модели управления рисками и модели формирования портфелей ценных бумаг. В последние годы физики обращают все большее внимание на экономические временные ряды. Раздел науки, посвященный исследованию экономических временных рядов при помощи математического аппарата, используемого в физике, получил название эконофизика [5]. Статьи по эконофизике на сегодняшний день составляют существенную часть публикаций в таких журналах как Nature, Physica A, Physical Review. Журнал Physica A имеет специальный ежеквартальный номер, который называется Econophysics, посвященный данной тематике. В свою очередь за последние годы более 30% всех диссертаций в мире по физико-математическим наукам касаются именно эконофизических исследований [6].

Экономические кризисы последних лет в полной мере выявили несовершенство используемых моделей в экономике, поэтому исследования в этой области представляют огромный интерес как для государственных органов крупнейших государств мира, так и для широкого круга коммерческих компаний. В свою очередь технический прогресс ставит все более сложные задачи, требующие исследования систем, демонстрирующих аномальные транспортные свойства.

Цель диссертационной работы

Целью диссертационной работы является получение модели, позволяющей на микроскопическом уровне описать процесс негауссовых случайных блужданий, не обладающих пространственной или временной автокорреляцией, для случаев отсутствия моментов выше определенного порядка у функции распределения элементарных прыжков системы, а также описание при помощи полученной модели эмпирически наблюдаемых временных рядов, представляющих собой динамику цен акций и индексов на фондовой бирже.

Научная новизна

1. На основе введенного микроскопического закона прыжка степенного типа получена модель, позволяющая единообразно статистически описать системы, не обладающие длинными пространственными или временными корреляциями, но в которых наблюдаются негауссовы случайные блуждания, вне зависимости от наличия/отсутствия моментов функции распределения у закона элементарных прыжков.

2. Впервые получены точные асимптотики распределений для случая “усеченных” блужданий Леви, закон прыжка в которых не имеет моментов выше второго.

3. Исследованы статистические характеристики временных рядов, представляющих собой фиксации цен и значений российских акций и фондовых индексов.

4. Построена модель, позволяющая на основе микроскопических законов флуктуаций цен на фондовых рынках описывать макроскопические распределения флуктуаций цен на фондовом рынке.

Практическая ценность

Результаты исследований автокорреляций и распределений флуктуаций российского фондового рынка, а также модели случайных блужданий с конечной дисперсией успешно используются для управления рисками торговых операций отдельных подразделений, а также фирмы в целом в ЗАО “Финансовая компания “ИНТРАСТ”. Также полученные модели случайных блужданий могут быть применены при моделировании случайных процессов, характеризующихся негауссовой статистикой, в частности задач, связанных с аномальной диффузией.

Основные результаты, выносимые на защиту

1. Введение закона прыжка степенного типа позволяет единым аналитическим образом рассмотреть как обычные случайные блуждания Леви, так и усеченные случайные блуждания Леви. Усеченные блуждания Леви асимптотически проявляют те же свойства устойчивости и масштабируемости, что и обычные, и имеют типично безмасштабное асимптотическое распределение степенного типа, характерное и для асимптот “чистых” блужданий Леви, но спадающее с ростом величины флуктуации быстрее.

2. Ряды данных относительных логарифмических приращений цен российских акций и фондовых индексов (доходностей) характеризуются короткими корреляциями, что повторяет поведение аналогичных величин на других фондовых рынках. При этом автокорреляции рядов модулей доходностей, напротив, длинные. Динамику цен акций и индексов можно представить как случайный процесс с независимыми приращениями.

3. Кумулятивные распределения вероятности доходностей российских акций и индексов, также как и у всех исследованных мировых индексов и акций, обладают свойством масштабной инвариантности, а асимптотика при больших флуктуациях описывается законом типа обратного куба.

4. Элементарным прыжком в схеме случайных блужданий на основе анализа скейлинга средних значений доходностей акций на фондовом рынке, измеренных на различных временных интервалах, является акт совершения сделки или тик цены.

5. Модифицированная схема с зависимостью свободного параметра прыжка от количества акций в единичной сделке позволяет удовлетворительно описать эмпирические распределения доходностей акций.

Апробация работы

Полученные в диссертации результаты докладывались на трех научных конференциях “Математика. Компьютер. Образование” (в 2008, 2009 и 2010 гг.), международной конференции по экономической науке ESHIA/WEHIA (Варшава, 2008 г.), Научной сессии Отделения физических наук РАН по эволюционной экономике и эконофизике 2 ноября 2010 г., Первом всероссийском конгрессе по эконофизике в Финансовой академии при Правительстве РФ (Москва 2009 г.), Первом российском экономическом конгрессе в МГУ (Москва, 2009 г.), семинаре в теоретическом отделе ИОФАН.

Структура и объем диссертации

Диссертация состоит из введения, четырех глав и заключения, содержит 39 рисунков, 8 таблиц, список цитированной литературы из 98 наименований. Объем диссертации 104 страницы.

Основное содержание работы

Во введении обоснована актуальность выбранной темы, приведены общие характеристики диссертации, дан краткий обзор диссертационной работы.

Первая глава носит вводный характер и посвящена истории возникновения задачи о случайных блужданиях, а также ее строгой математической формулировке и решению. Формально задача о случайных блужданиях ставится следующим образом. Следует найти плотность вероятности того, что частица, испытав N прыжков в пространстве некоторой размерности G, окажется от места старта в интервале от до . Каждый i-й прыжок может быть произведен в интервал длин от до с вероятностью . Схема решения задачи о случайных блужданиях известна [7]. Необходимо вычислить интеграл по всему объему среды, в которую могут быть совершены прыжки:

, (1)

где - радиус-вектор положения частицы после i прыжков. В одномерном случае при наличии всех моментов у функции распределения элементарных прыжков получается обычное решение для классической броуновской частицы. Этот результат является выражением ЦПТ теории вероятностей. Важнейшим требованием в решении задачи является наличие всех моментов у закона элементарного прыжка. Точные асимптотики распределений в случае отсутствия у закона прыжка высших моментов представляют отдельный интерес и рассматриваются в данной работе. Также в главе 1 описывается предельный переход в задаче о случайных блужданиях, связывающий ее с задачами диффузии, а также модель случайных блужданий с непрерывным временем, которая позволяет перейти от дискретных блужданий к непрерывным. Кроме того, обсуждаются реальные физические и нефизические системы, в которых имеют место негауссовы случайные блуждания. Хорошо известно, что свойства негауссовых случайных блужданий присущи финансовым временным рядам, таким как ряды цен акций или фондовых индексов [8].

Во второй главе описываются основные статистические свойства финансовых временных рядов, представляющих собой фиксации относительных логарифмических приращений цен (доходности, returns) акций и фондовых индексов на различных мировых фондовых рынках на разных временных масштабах, исследованные в работах других авторов (например, см. [9]). В частности, такие временные ряды обладают короткими автокорреляциями (индексы) или же они и вовсе дельта-коррелированы во времени (акции). Можно говорить о том, что данный процесс представляет собой случайные блуждания с независимыми приращениями. В свою очередь функции распределения флуктуаций исследованных временных рядов отличаются от распределения Гаусса, возникновения которого можно было бы ожидать в следствие ЦПТ. Эти распределения характеризуются медленно спадающей асимптотикой (толстыми хвостами) и обладают свойством масштабной инвариантности для большого диапазона временных масштабов. При этом если центральная часть распределения достаточно хорошо описывается симметричным устойчивым распределением Леви, то “хвосты” распределения, хотя и обладают более слабо спадающей асимптотикой по сравнению с распределением Гаусса, все же спадают быстрее “хвостов” распределения Леви. Хвостовая часть эмпирического распределения хорошо описывается степенным законом вида , что говорит о наличии второго момента у данного распределения. Эти свойства временных рядов доходностей характерны для широкого спектра исследованных мировых фондовых рынков.

Для того чтобы перейти к негауссовым случайным блужданиям, необходимо расширить задачу о случайных блужданиях, поставленную в главе 1 данной работы, для случаев отсутствия у законов элементарных прыжков частицы всех моментов функции распределения. Решению такой задачи для случаев отсутствия всех моментов функции распределения выше первого и выше второго посвящены соответственно разделы 3.1 и 3.2 главы 3. Необходимо рассмотреть одномерные случайные блуждания с законом элементарного прыжка , не дающего всех конечных моментов, но обладающего нормировкой, и вычислить интеграл (1). Для этого введен степенной закон, где для малых прыжков предполагается ограниченность и гладкость:

(2)

Здесь C1 - константа, определяемая требованием нормировки, z - константа, имеющая смысл некоторой характерной длины прыжка, - степенной параметр. В разделе 3.1 рассмотрен случай, когда закон прыжка (2) не имеет моментов выше первого. Такая схема реализуется при в>1/2. Функция распределения с законом прыжка (2) сводится к функции распределения Леви:

, (3)

где K - частота в преобразовании Фурье, N - число прыжков, Г - гамма-функция. Закон распределения блужданий Леви характеризуется медленно спадающей асимптотикой, т.е. значительным количеством больших флуктуаций. Действительно, асимптотикой (3) является

, , (4)

т.е. асимптотика распределения Леви укладывается в диапазон от 1/ до 1/3. Распределение Леви обладает одним интересным свойством. Если поделить асимптотику (4) на асимптотику закона прыжка (2), получим

(5)

Это выражение означает, что большие флуктуации могут возникать посредствам одного прыжка (R=r при N=1).

В разделе 3.2 рассмотрен случай, при котором закон прыжка не имеет моментов выше второго, то есть он обладает конечной дисперсией. Процесс, возникающий в таком приближении, можно назвать “усеченными” блужданиями Леви, так как он обладает более быстро спадающей асимптотикой по сравнению с распределением Леви. Используется тот же закон прыжка (2), где теперь > 3/2. При небольших флуктуациях до R ~ 10z эти распределения хорошо аппроксимируются соответствующей гауссовой функцией

(6)

Этот факт является выражением ЦПТ для таких случайных процессов [12]. Гауссова функция справедлива вплоть до флуктуаций, в раз больших характерной средней величины z [13].

В области больших флуктуаций определена ранее не известная точная асимптотика функции распределения. Показано точно, что асимптотическое поведение плотности распределения “усеченных” блужданий Леви может быть описано для любого законом

. (7)

Зависимость среднеквадратичного отклонения от времени имеет вид

(8)

Выражение для усеченных блужданий Леви может быть нормировано на средний квадрат R. В этом случае все гауссовы асимптоты (для малых R) при любом в становятся одинаковыми. В то же время асимптоты (7) становятся пропорциональными N-1/2.

Рис.1. Кумулятивная функция распределения усеченных блужданий Леви при в =2 (ось Y), нормированная на R = N1/2z (ось X). Сплошная линия: N = 1, штриховая линия: N = 60, точки: N = 450.

На рис.1 показана кумулятивная функция распределения усеченных блужданий Леви при в = 2. Хорошо видна разница между кривыми для разных значений N. Кумулятивные распределения при любых в ведут себя аналогичным образом.

Таким образом, введение закона прыжка типа (2) позволяет единым аналитическим образом рассмотреть как обычные блуждания Леви, так и “усеченные” блуждания Леви.

Глава 4 посвящена применению полученных моделей негауссовых случайных блужданий для описания реальной системы, в которой такие блуждания имеют место. Учитывая факты, изложенные в главе 2, рассматривается динамика доходностей акций и индекса российского фондового рынка. Ранее достаточно подробные исследования статистических характеристик временных рядов, представляющих фиксации цен российских ценных бумаг не проводились. Разделы 4.1 и 4.2 непосредственно посвящены исследованию статистических характеристик данных временных рядов и их сравнению с результатами, полученными для других рынков (например, см. [6, 8, 9]). Временные ряды доходностей российского фондового индекса РТС, также как и его аналоги на зарубежных рынках, обладают короткими автокорреляциями с характерным временем около 0,85 мин. В свою очередь доходности акций и вовсе дельта-коррелированы во времени. Функция распределения флуктуаций доходностей на российском рынке определялась для различных масштабов фиксации данных - от 1 мин до 1 дня. Также как и на всех западных рынках, эти распределения обладают свойствами масштабной инвариантности (при перенормировке на величину стандартного отклонения все функции становятся близкими) и характеризуются медленно спадающей асимптотикой для больших флуктуаций вида (рис.2). Асимптотика распределения была определена при помощи метода Хилла [10], который является одним их наиболее распространенных способов оценки показателя степени для степенных зависимостей. Таким образом, можно утверждать, что указанные свойства являются универсальными как для российского рынка, так и для всех исследованных рынков зарубежных стран.

случайный блуждание негауссовый фондовый

Рис.2. Кумулятивные распределения положительной флуктуаций доходности индекса РТС, двойной логарифмический масштаб. Звезды - положительная часть пошагового распределения. Квадраты - положительная часть распределения 15-мин доходности. Круги - положительная часть распределения однодневной доходности, треугольники - положительная часть распределения месячной доходности.

Еще одним интересным свойством, которое можно наблюдать в исследованной в данной работе системе, описывающей поведение российских и зарубежных акций и индексов, является длинная память во временных рядах, формируемых модулями доходностей. При этом время автокорреляции таких рядов на российском фондовом рынке составляет несколько месяцев. Несмотря на это, на основании выявленных свойств временных рядов доходностей акций и индексов можно утверждать, что процесс, который они представляют, является вариантом случайных блужданий с независимыми приращениями и с негауссовой асимптотикой распределений.

Прежде чем переходить к непосредственному применению теоретических моделей, необходимо рассмотреть вопрос о том, какие эмпирические данные соответствуют элементарному прыжку в схеме случайных блужданий? Этому посвящен раздел 4.3. Минимальный масштаб изменения цены, по которому можно корректно построить эмпирические распределения (в силу имеющихся в базе данных) равен 1 мин. Более высокочастотные данные, доступные нам, представляют собой уже фиксации цен отдельных сделок (тиков цены), временной интервал между которыми является случайной величиной. Необходимо ответить на вопрос, является ли тик элементарным прыжком в схеме случайных блужданий?

Эмпирические данные позволяют легко определить среднее значение временного интервала между отдельными изменениями цены и собственно характерный масштаб этого изменения . Если тик цены является минимальным масштабом процесса, то эти две величины должны удовлетворять функциональной связи, определяющей зависимость дисперсии от числа прыжков (учитывая, что N ~ t), полученной в рамках модели. Дисперсия ряда доходностей, исходя из модели, при в=2 равна N1/2z. Эмпирические данные фиксаций доходностей для временных масштабов мин. позволяют построить удовлетворяющую теоретической модели зависимость для этих временных масштабов (рис. 3, линия - 1). Если точка с координатами принадлежит экстраполяции данной зависимости (пунктирная линия), то можно говорить о том, что тик и является минимальным масштабом процесса. Зафиксировав вычисленное значение , можно сравнить, эмпирически определенное значение с временным интервалом , соответствующим экстраполяции. Различие данных величин для акций Сбербанка составляет всего 3%. Таким образом, именно тик является единичным прыжком в схеме случайных блужданий.

Рис. 3. Зависимость средней доходности акций ОАО “Газпром” от частоты фиксации значений (линия 1). Экстраполяция данной величины (пунктирная линия). Линия 2 - теоретическое значение среднего времени между двумя тиками. Линия 3 соответствует уровню средней тиковой доходности.

Раздел 4.4 посвящен применению полученных теоретических моделей для описания эмпирически наблюдаемых данных временных рядов доходностей российских акций и индекса РТС. Характеру асимптотики для больших флуктуаций, очевидно, соответствует форма распределения усеченного блуждания Леви, получающегося в результате реализации теоретической схемы с законом единичного прыжка (2) при в = 2. Однако в этом случае форма распределения меняется при различных значениях N (рис. 1), чего, однако, не наблюдается в действительности (рис. 2). Для описания эмпирических данных необходимо модифицировать модель.

Первая возможность модификации модели - это попытка применения схемы случайных блужданий с непрерывным временем (CTRW) [14]. В самом деле, временные интервалы между двумя последовательными тиками могут варьироваться в широком диапазоне. Функция распределения этих временных интервалов спадает с уменьшением Дt как (Дt)4.4. Учет времени между транзакциями не позволяет получить новые результаты в силу наличия математического ожидания величины временного интервала между тиками. Был проведен дополнительный анализ имеющихся эмпирических данных. Каждая сделка в базе данных представляет собой тройку параметров: это ее время, цена и количество акций, участвующих в сделке (объем торгов). Было обнаружено, что распределение количества акций, торгуемых в одной биржевой сделке (одном тике), Q(x), определенно попадает в диапазон Леви, то есть асимптотическая (“хвостовая”) часть распределения хорошо описывается законом вида x-т, где 2>т>0, если рассматривать кумулятивную функцию распределения. Для российских акций были определены показатели в диапазоне 1.7 > т > 1.6 в зависимости от рассматриваемой ценной бумаги. На рис.4 показано кумулятивное распределение объема торгов в одном тике.

Рис. 4. Кумулятивное распределение объема торгов в одном тике для акций Сбербанка 21.11.2007 г. Прямой линией обозначена “хвостовая” зависимость x-т, где т = 1.7.

Для модификации схемы усеченных случайных блужданий Леви, которая бы позволила корректно описать эмпирические данные, необходимо использовать связь стандартного отклонения z и среднего объема сделки при помощи степенного закона. Модификация модели ограничивается предположением о том, что каждое стандартное отклонение z в схеме является случайной величиной zi, пропорциональной объему сделки в i-й транзакции. В сфере финансов этот эффект определяется выражением: “объем торгов двигает цену” [15]. Данная модификация означает, что вводится зависимость функции распределения вероятности единичных флуктуаций фi(ri) от другой случайной величины zi.

В данном случае концептуально схема снова напоминает модель случайных блужданий с непрерывным временем (CTRW). Только в качестве субординированной функции используется не распределение интервалов времени между отдельными прыжками, а распределения другой неотъемлемой величины, присущей эмпирическому ряду (объема торгов в каждой сделке). Проблема прямого применения CTRW состоит в том, что конечная функция распределения для R будет зависеть от набора случайных величин {zi}. Например, функция распределения усеченных случайных блужданий Леви для в =2 получается в виде

. (9)

Так как все величины {zi} имеют функцию распределения вида x-д при больших zi, где д 2.5-2.7, возможно усреднение (9) по каждой zi. Тем не менее этот результат будет неверным, так как конечный вид усредненной таким образом функции не будет соответствовать экспериментально наблюдаемым данным, а именно не будет пропорционален R-4 при больших R.

Применение простой схемы CTRW невозможно и для асимптотических значений (9), так как при больших R имеем

(10)

и набор случайных величин {zi} дает только одну случайную величину Уzi3. К сожалению, функция плотности вероятности распределения данной величины на хвостах имеет вид x-2/3-д/3. Эта функция не имеет математического ожидания, которое необходимо для применения схемы CTRW.

Поэтому метод CTRW необходимо обобщить на случай отсутствия условного среднего случайной величины Уzi3 в (10). Выражение (9) может быть исследовано на предмет зависимости от N, т.е. перенормировки. Если перенормировать величину R в (9) или соответствующее асимптотическое кумулятивное распределение

(11)

на стандартное отклонение (Уzi2)1/2, что мы делаем при вычислении эмпирических распределений, возникает скейлинговая зависимость выражения (11) в виде N-1/2 в случае Уzi3~ N . В то же время зависимость Уzi3 от N имеет другой вид, так как функция распределения случайной величины Уzi3 сходится к распределению Леви. Конечный результат для функции распределения имеет вид Уzi3 ~ N3/(д-1), и конечная наблюдаемая зависимость (11) от N после перенормировки реальной флуктуации цены R на экспериментально полученное стандартное отклонение равна

(12)

При д ~ 2.5-2.7 зависимости (12) лежат в диапазоне N0.5 to N0.27 (Рис. 5). Таким образом, стандартная перенормировка обеспечивает слабую зависимость всех функций распределения флуктуаций цены от количества прыжков (тиков) N. Такие форма зависимости выражения (12) от числа прыжков N позволяет описывать распределения, полученные как для российского рынка, так и для зарубежных рынков, где имеются слабые зависимости распределений от N.

Рис. 5. Кумулятивная функция распределения флуктуаций цены для в =2 (ось Y), нормированных на стандартное отклонение с д = 2,7.Сплошная линия: N = 1, пунктирная линия: N = 60, точки: N = 450.

В заключении диссертации сформулированы основные результаты работы.

Основные выводы и результаты

1. В работе построена двухуровневая модель негауссовых случайных блужданий с конечной дисперсией, где из степенного распределения вероятности единичного прыжка следует негауссово распределение вероятности найти частицу после большого количества прыжков. Введение закона прыжка типа (2) позволяет единым аналитическим образом рассмотреть как обычные блуждания Леви, так и усеченные блуждания Леви. Усеченные блуждания Леви асимптотически проявили те же свойства устойчивости и масштабируемости, что и обычные.

2. Для усеченных блужданий получены аналитические асимптоты и выяснены законы масштабирования. Асимптотические усеченные блуждания Леви оказались имеющими типично безмасштабное распределение ~ R-2, которые характерны и для асимптот “чистых” блужданий Леви, но спадают с ростом R быстрее.

3. Исследованы статистические характеристики временных рядов, представляющих собой фиксации логарифмов относительных приращений цен (доходностей) акций и индексов на российском фондовом рынке. Ряды данных доходностей характеризуются короткими автокорреляциями, что повторяет поведение аналогичных величин на других фондовых рынках. Таким образом, можно утверждать, что динамику цен акций и индексов можно представить в первом приближении как случайный процесс с независимыми приращениями. Автокорреляции рядов модулей доходностей, напротив, длинные.

4. Исследованы функции распределения флуктуаций доходностей акций и индексов на российском фондовом рынке. Кумулятивные распределения вероятности флуктуаций доходностей российских акций и индексов, также как и у всех исследованных мировых индексов и акций, обладают свойством масштабной инвариантности, а асимптотика при больших флуктуациях описывается законом типа обратного куба, то есть не попадает в диапазон Леви.

5. Определено, что элементарным прыжком в схеме случайных блужданий, исходя из скейлинга средних значений доходностей акций на фондовом рынке, измеренных на различных временных интервалах, является акт совершения единичной сделки (тик цены).

6. Простая схема случайных блужданий с законом единичного прыжка () при =2 не позволяет дать точного объяснения зависимости нормированных функций распределения и кумулятивных распределений от N. Модификация схемы случайных блужданий обеспечивается за счет введения эмпирически подтвержденной зависимости величины {zi} от количества акций, торгуемых в одной сделке. В этом случае конечная зависимость кумулятивных функций распределения от количества тиков попадает в диапазон от N0.5 до N0.27, что позволяет удовлетворительно описать эмпирические распределения.

Список публикаций по теме диссертации

Основные результаты диссертационного исследования отражены в следующих публикациях:

1. Видов П.В., Романовский М.Ю. “Доходность активов российского фондового рынка: автокорреляции и распределения” // Тезисы XV международной конференции Математика. Компьютер. Образование 2008, www.mce.su

2. Видов П.В., Жуков И.А., Романовский М.Ю. “Доходность активов российского фондового рынка: автокорреляции и распределения” // Математика. Компьютер. Образование. Cб. трудов XV международной конференции. Ижевск: Научно-издательский центр "Регулярная и хаотическая динамика", 2008. Т. 1, с. 302, С. 196-201.

3. Видов П.В., Романовский М.Ю. Аналитические представления негауссовых законов случайных блужданий. Труды Института общей физики им. А.М. Прохорова, M: Наука, 2009, Т.65.

4. Видов П.В., Романовский М.Ю. Неклассические случайные блуждания и феноменология флуктуаций доходности ценных бумаг на фондовом рынке. УФН, Т. 181, 2011, С.774-778.

5. Романовский М.Ю., Видов П.В., Пыркин В.А. “Является ли тик элементарным прыжком в схеме случайных блужданий на фондовом рынке?” // Компьютерные исследования и моделирование, Т.2, № 2, 2009, С. 219-223.

6. Vidov P.V., Romanovsky M.Yu. “Analytical representation of non-Gaussian laws of random walks” // Physics of Wave Phenomena, Vol. 17, №3, 2009, C. 218-228.

7. Romanovsky M.Yu., Vidov P.V. Analytical representation of stock and stock-indexes returns: Non-Gaussian random walks with various jump laws. Physica A, Vol. 390, № 21-22, 2011, pp. 3794-3805.

Цитируемая литература

1. G. Pfister, H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3” // Phys. Rev. B, Vol.15, (1977), pp. 2062-2083.

2. P. Barthelmy, J. Bertoltti, D. Wiersma, “A Levy flight for light” // Nature, Vol. 453, (2008), pp. 495-498.

3. Cole B.J., “Fractal time in animal behavior: the movement activity of Drosophila” // Anim. Behav., Vol. 50, (1995), pp. 1317-1324.

4. D. Brockman, L. Hufnagel, T. Geisel, “The scaling of human travel” // Nature Vol. 439, (2006), pp. 462-465.

5. J.-P. Bouchaud, “Economics needs a scientific revolution” // Nature. Vol. 455. (2008), p.1181

6. Farmer, J.D., “Physicists attempt to scale the ivory towers of finance” // Computing in Science & Engineering (Nov./Dec.), (1999), p. 26-39.

7. S. Chandrasekhar, “Stochastic problems in physics and astronomy” // Rev. Mod. Phys., Vol. 15, (1943), p. 1.

8. R. N. Mantegna and H. E. Stanley, “Scaling behavior in the dynamics of an economic index” // Lett. Nature, Vol. 376, (1995), p. 46.

9. R.N. Mantegna, H.E. Stanley, “An Introduction to Econophysics: Correlations and Complexity in Finance” // Cambridge University Press: Cambridge, (2000), p. 149.

10. B.M. Hill, “A Simple General Approach to Inference About the Tail of a Distribution” // The Annals of Statistics, Vol. 3, No. 5, (1975), pp. 1163-1174.

11. Романовский М.Ю., Романовский Ю.М., “Введение в эконофизику. Статистические и динамические модели”, Москва. Ижевск: РХД, (2007), 280 с.

12. Феллер В., “Введение в теорию вероятностей и ее приложения”, Москва: Мир, (1984).

13. Bouchaud J.-P., Potters M., “Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management”, Cambridge: Cambridge Univ. Press, (2003).

14. H. Scher, E.W. Montroll, “Anomalous transit-time dispersion in amorphous solids” // Phys. Rev. B, Vol. 12, (1975), p. 2455.

15. Karpoff J. M., “The Relation between Price Changes and Trading Volume: A Survey” // Journal of Finance Vol. 41(5), (1986), p. 1069.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.

    презентация [92,4 K], добавлен 01.11.2013

  • Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.

    презентация [1,4 M], добавлен 19.07.2015

  • События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.

    контрольная работа [118,5 K], добавлен 30.01.2015

  • Сходимость последовательностей случайных величин. Центральная предельная теорема для независимых одинаково распределенных случайных величин. Основные задачи математической статистики, их характеристика. Проверка гипотез по критерию однородности Смирнова.

    курсовая работа [1,6 M], добавлен 13.11.2012

  • Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.

    задача [82,0 K], добавлен 12.02.2011

  • Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

    реферат [325,3 K], добавлен 23.01.2011

  • Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.

    презентация [1,4 M], добавлен 19.07.2015

  • Решение задач по определению вероятностных и числовых характеристик случайных явлений с обоснованием и анализом полученных результатов. Определение вероятности, среднего значения числа, надежности системы, функции распределения, математического ожидания.

    курсовая работа [227,6 K], добавлен 06.12.2010

  • Понятие математического моделирования: выбор чисел случайным образом и их применение. Критерий частот, серий, интервалов, разбиений, перестановок, монотонности, конфликтов. Метод середины квадратов. Линейный конгруэнтный метод. Проверка случайных чисел.

    контрольная работа [55,5 K], добавлен 16.02.2015

  • Вероятность совместного выполнения двух неравенств в системе двух случайных величин. Свойства функции распределения. Определение плотности вероятности системы через производную от соответствующей функции распределения. Условия закона распределения.

    презентация [57,9 K], добавлен 01.11.2013

  • Классическое, статистическое и геометрическое определения вероятности. Дискретные случайные величины и законы их распределения. Числовые характеристики системы случайных величин. Законы равномерного и нормального распределения систем случайных величин.

    дипломная работа [797,0 K], добавлен 25.02.2011

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа [103,1 K], добавлен 15.06.2012

  • Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция [387,7 K], добавлен 12.12.2011

  • Алгебраический расчет плотности случайных величин, математических ожиданий, дисперсии и коэффициента корреляции. Распределение вероятностей одномерной случайной величины. Составление выборочных уравнений прямой регрессии, основанное на исходных данных.

    задача [143,4 K], добавлен 31.01.2011

  • Пространства элементарных событий. Совместные и несовместные события. Функция распределения системы случайных величин. Функции распределения и плотности распределения отдельных составляющих системы случайных величин. Условные плотности распределения.

    задача [45,4 K], добавлен 15.06.2012

  • Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.

    контрольная работа [705,1 K], добавлен 22.11.2013

  • Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция [285,3 K], добавлен 17.12.2010

  • Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Проверка статистических гипотез и выполнение центральной предельной теоремы для заданных последовательностей независимых случайных величин.

    курсовая работа [364,8 K], добавлен 13.11.2012

  • Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.

    курсовая работа [582,0 K], добавлен 13.11.2012

  • Случайный процесс в теории вероятностей. Математическое ожидание и дисперсия. Многомерные законы распределения. Вероятностные характеристики "входной" и "выходной" функций. Сечение случайной функции. Совокупность случайных величин, зависящих от параметра.

    курсовая работа [1,8 M], добавлен 23.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.