Взаимосвязь математики и экономики

Особенность использования математики в экономических процессах. Изучение специфических математических методов, которые основываются на основных постулатах теории вероятностей. Характеристика разложения функции в бесконечную сумму степенных функций.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 27.02.2019
Размер файла 15,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

УДК51

ФГБОУ ВО Ульяновский государственный аграрный университет

ВЗАИМОСВЯЗЬ МАТЕМАТИКИ И ЭКОНОМИКИ

Ермолаева В.И.

Герасимова Т.А.

В последние годы в России произошло много изменений в применении разделов прикладной математики в различных сферах. Интересы специалистов по прикладной математике переместились на новые области. Оперативное развитие банковской, инвестиционной и страховой деятельности обусловило необходимость привлечения в данные области специалистов нового типа. Так, одной из таких областей оказалась финансовая математика. Финансовая математика представляет собой раздел прикладной математики, который изучает задачи, имеющие финансовые расчеты. В данной области каждый финансовый инструмент рассматривается со стороны генерируемого этим инструментом потока денежных средств.

Тема не теряет свою актуальность и в современном обществе, так как методы математического расчета процентных ставок в сфере финансов и кредита имеют широкое применение, особенно при финансовом проектировании, при сравнении и отборе долгосрочных инвестиционных проектов, при расчетах, связанных с личным страхованием.

То есть, такие специалисты как финансисты, бухгалтера, экономисты, банкиры, должны обладать знанием методов математических операций с процентной ставкой.

Сейчас для решения многих задач в сфере финансов и кредита используют такие специфические математические методы, которые основываются на основных постулатах теории вероятностей, значительный вклад в которую внесли такие русские ученые, как: П.Л. Чебышев, А.А. Марков, А.М. Ляпунов. Теория вероятностей позволяет предсказать суммарный результат, то есть если специалисты по финансам и кредиту изучат законы, управляющие этими случайными событиями, то при возникновении необходимости смогут изменить их ход. Так, на данный момент, коммерческие банки имеют в своем расположении большое количество операций денежно-кредитного характера, но все же главное направление их деятельности - это выдача кредитов. Поэтому у банков возникает такая опасность, как кредитный риск, зависящий в главной мере от вероятности выполнения заемщиком всех обязательств, предписанных договором.

То есть вероятность определяется тем, как заемщик погасит кредитные обязательства. Человек, взявший кредит (т.е. заемщик), возвращает кредит долями и платит процент, установленный банком. Но условия договора могут не выполняться, если наступят обстоятельства, которые в последствие определят наложение и взыскания с помощью судебного иска. Поэтому для банка рациональнее и разумнее выдавать кредиты лишь тогда, когда он будет уверен в своем заемщике. В этом случае возникает случайная величина - вернули кредит или нет. Для определения надежности кредитуемого, банк проводит анализ общей характеристики, личных доходов, собственного капитала и экономической ситуации в целом. Данный анализ проводится на основе методов теории вероятностей и математической статистики. Так же теория вероятностей используется и при нахождении простых (то есть расчет дохода на процент, основанный на арифметической прогрессии) и сложных (то есть начисление в банковском депозите, который по истечении каждого периода предполагает то, что начисленные проценты становятся суммой) процентов, например, при помощи такого приема, как ряды Тейлора.

Ряд Тейлора представляет собой разложение функции в бесконечную сумму степенных функций. Он применяется при аппроксимации функции многочленами, а линеаризация уравнений основывается на разложении в ряд Тейлора и отсечения членов выше первого порядка.

экономический математический вероятность функция

Библиографический список

1. Ермолаева, В.И. Временные ряды и прогнозирование/В.И. Ермолаева, С.И.Банников//Актуальные вопросы аграрной науки и образования. Материалы международной научно-практической конференции, посвященной 65-летию Ульяновской ГСХА. -Ульяновск: УГСХА, 2008.-С. 264-266

2. Ермолаева, В.И. Выбор параметра оптимизации при математическом моделировании объекта./В.И. Ермолаева//Вестник Ульяновской государственной сельскохозяйственной академии. -№ 2(5). -2007. -С. 41-42.

3. Ермолаева В.И. О некоторых путях совершенствования самостоятельной работы студентов/В.И. Ермолаева//Проблемы модернизации высшего профессионального образования. Материалы Международной научно-методической конференции.-2004. С. 16-18.

4. Ермолаева, В.И. Математика: учебное пособие для студентов аграрных вузов обучающихся заочно по инженерным специальностям/В.И.Ермолаева, О.Г.Евстигнеева.Ульяновск: УГСХА им. П.А. Столыпина, 2013. -160с.

5. .Ермолаева, В.И. Модель адаптивного тестирования нечеткой математики/В.И. Ермолаева, С.И.Банников//Молодежь и наука XXI века. Материалы II открытой Всероссийской научно-практической конференции молодых ученых. -Ульяновск: УГСХА, 2007.-С. 144-147.

6. Хабарова, В.В. Математическое обоснование процесса деформации при измельчении корнеплодов/В.В. Хабарова, В.И. Ермолаева//Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения Материалы VI Международной научнопрактической конференции. 2015. С. 118-119

Аннотация

Работа посвящена выяснению вопроса, где можно использовать математику в экономических процессах. При проведении анализа авторы статьи сделали выводы, что математику можно использовать в различных приложениях экономики.

Ключевые слова: математика, экономика, математические методы, разделы математики, взаимосвязь.

The paper is devoted to clarifying the question, where it is possible to use mathematics in economic processes. During the analysis, the authors of the article concluded that mathematics can be used in various applications of the economy.

Key words: mathematics, economics, mathematical methods, sections of mathematics, interrelation.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат [27,6 K], добавлен 11.09.2010

  • Изучение теории вероятностей в ходе школьной программы позволяет развивать у школьников логическое мышление, способность абстрагировать, выделять суть. История теории вероятностей и ее научные основы. Виды событий. Операции со случайными событиями.

    дипломная работа [88,6 K], добавлен 22.01.2009

  • Анализ основных понятий, утверждений, связанных с показательной и логарифмической функциями в курсе математики. Изучение методик решения типовых задач. Подбор и систематизация задач на нахождение и использование показательной и логарифмической функций.

    курсовая работа [1,5 M], добавлен 20.07.2015

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

  • Вклад А. Колмогорова в теорию вероятностей: публикации по проблемам дескриптивной и метрической теории функций; его глубокий интерес к философии математики. Разработка метода моментов Чебышевым. Исправление учеником Чебышева Марковым его теоремы.

    презентация [424,5 K], добавлен 28.04.2013

  • История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

    реферат [38,2 K], добавлен 09.10.2008

  • Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат [32,6 K], добавлен 06.09.2006

  • Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.

    презентация [124,5 K], добавлен 17.05.2012

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

  • Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.

    курсовая работа [347,2 K], добавлен 12.09.2009

  • Характер давньогрецької математики та джерела. Характер давньогрецької математики та її джерела. Виділення математики в самостійну теоретичну науку. Формулювання теорем про площі і обсяги складних фігур і тіл. Досягнення олександрійських математиків.

    курсовая работа [186,2 K], добавлен 22.11.2011

  • Анализ роли математики в оценке количественных и пространственных взаимоотношений объектов реального мира. Трактовка и обоснование математических теорем Ферма, Ролля, Лагранжа, Коши и Лопиталя. Обзор биографии, деятельности и трудов великих математиков.

    курсовая работа [467,9 K], добавлен 08.04.2013

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка [777,8 K], добавлен 24.12.2010

  • Оптимизация как раздел математики, ее определение, сущность, цели, формулировка и особенности постановки задач. Общая характеристика различных методов математической оптимизации функции. Листинг программ основных методов решения задач оптимизации функции.

    курсовая работа [414,1 K], добавлен 20.01.2010

  • Визначення поняття математики через призму іонійського раціоналізму. Основні властивості правильних багатокутників і правильних багатогранників. Загальна характеристика внеску в розвиток головних засад сучасної математики видатних давньогрецьких вчених.

    реферат [91,5 K], добавлен 15.02.2010

  • Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация [2,2 M], добавлен 20.09.2015

  • Различные трактовки понятия функции в школьном курсе математики. Функция и задание ее аналитическим выражением. Область определения функции и область значений функции. Тесты по теме "Числовые функции. Четные и нечетные функции. Периодические функции".

    дипломная работа [213,1 K], добавлен 07.09.2009

  • Сущность вероятностной задачи-схемы независимых испытаний швейцарского профессора математики Я. Бернулли. Пример решения задачи по формуле Бернулли. Применение методов теории вероятностей в различных отраслях естествознания, техники и прикладных науках.

    презентация [301,3 K], добавлен 10.03.2011

  • Исследование числовых рядов на сходимость. Область сходимости для разных степенных рядов. Разложение функции в ряд Тейлора. Нормы сеточной функции. Исследование устойчивости разностной схемы для однородного уравнения. Совокупность разностных уравнений.

    курсовая работа [586,9 K], добавлен 19.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.