Математическое моделирование полета лыжника при прыжке с трамплина
Специальные математические формулы и нормы для расчета геометрических параметров трамплинов. Изменение угла атаки прыгуна во время прыжка. Определение угла атаки системы "лыжник-лыжи" при полете лыжника. Моделирование основных параметров прыжка.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 01.03.2019 |
Размер файла | 97,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПОЛЕТА ЛЫЖНИКА ПРИ ПРЫЖКЕ С ТРАМПЛИНА
MATHEMATICAL MODELING OF THE FLIGHT OF A SKIER WHEN JUMPING FROM A SPRINGBOARD
Починов В.Д., Хабарова В.В.
ФГБОУ ВО Ульяновский государственный
аграрный университет
Ульяновск, Россия
Для того, чтобы лыжник, идущий на рекорд, не разбился, улетев за пределы склона приземления или не долетев до него, существуют специальные формулы и нормы для расчета геометрических параметров трамплинов.
Рис. 1. Основные геометрические элементы трамплина
Трамплин состоит из участка для разгона и так называемого стола отрыва, с которого лыжники уходят в свободный полет. Стол отрыва наклонен к горизонтали под небольшим отрицательным углом, обычно от -60 до -120. Здесь собственно трамплин заканчивается, а все, что дальше, называется горой приземления или трамплинной горой. Высота стола отрыва над склоном горы приземления обычно обозначается h и составляет от 2% до 4% от максимальной дальности, обозначаемой W. Трамплинная гора состоит из трех участков: участка необработанного склона длиной N и шириной H, участка приземления - прямого участка склона, составляющего с горизонталью отрицательный угол в, равный согласно принятым нормам от -250 до -400, и участка торможения. Участок торможения, как правило, имеет профиль, плавно закругляющийся вверх. Расстояние по горизонтали от канта отрыва - крайней точки стола отрыва - до точки максимальной дальности обозначается К.
Весь прыжок можно разбить на четыре фазы: взлет, группировку, собственно полет и подготовку к приземлению.
Рис. 2. Изменение угла атаки прыгуна во время прыжка
математическое моделирование лыжник трамплин
Ориентацию лыжника в пространстве определяет угол атаки системы «прыгун-лыжи», то есть угол между плоскостью системы и скоростью набегающего потока воздуха.
Рис. 3. Определение угла атаки системы «лыжник-лыжи»: г - угол между лыжами и горизонталью, и - угол между скоростью и горизонталью, ц - угол атаки.
Как видно из кинограмм прыжков, и из наблюдений за прыгунами, угол между лыжами и горизонталью в полете практически не меняется, меняется лишь угол между скоростью и горизонталью.
Литература
1. Хабарова, В.В. Модель движения корнеплодов в процессе резания консольными ножами/В.В. Хабарова// Материалы Международной научно-практической «Актуальные вопросы аграрной науки и образования», Ульяновск: Ульяновская ГСХА, 2010, т.III, ч.3, с.129-133
2. Хабарова, В.В. Разработка измельчителя корнеплодов с обоснованием его параметров и режимов работы: автореферат дис. … канд. технич. наук: 05.20.01 /Хабарова Виктория Валерьевна. - Уфа, 2011.- 20 с.
3. Хабарова, В.В. Процесс измельчения корнеплодов консольными ножами /В.В. Хабарова, Ю.М. Исаев, В.А. Богатов// Механизация и электрификация сельского хозяйства, 2008. No 2. С. 83
4. Хабарова, В.В. Математическое обоснование процесса деформации при измельчении корнеплодов/В.В. Хабарова, В.И. Ермолаева// Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения. Материалы VI Международной научно-практической конференции.- Ульяновская ГСХА, 2015. С. 118119.
5. Хабарова, В.В. Анализ факторов, определяющих энергозатраты с вибрациями при измельчении корнеплодов и бахчевых/ В.В. Хабарова, В.А. Богатов, Е.И. Зотов // Вестник Ульяновской государственной сельскохозяйственной академии. - № 1 (2) январь - март 2006 г. - C. 67-70.
6. Хабарова, В.В. Определение оптимальной частоты вибрации ножей при измельчении корнеплодов/В.В. Хабарова// Материалы IV Международной научно-практической конференции «Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения» 22-24 ноября Ульяновская государственная сельскохозяйственная академия. - Ульяновск, 2012.
7. Хабарова, В.В. К вопросу обоснования конструктивных особенностей измельчителя корнеплодов / В.В. Хабарова, В.И. Ермолаева// Материалы VI Международной научно-практической конференции «Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения». - Ульяновск: ГСХА, 2015. С. 197-199.
8. Хабарова Виктория Валерьевна. Разработка измельчителя корнеплодов с обоснованием его параметров и режимов работы/ Диссертация на соискание ученой степени кандидата технических наук / Башкирский государственный аграрный университет. Уфа, 2011.
Размещено на Allbest.ru
...Подобные документы
Особенности применения теорем Пифагора и косинусов в делении углов на равновеликие части. Порядок нахождения углов в геометрических фигурах с помощью биссектрис. Методика деления угла на три равные части с использованием способа угла больше развернутого.
статья [1,0 M], добавлен 28.02.2010Задача о делении угла на три равные части (трисекция угла), история ее происхождения. Построение трисектрисы угла (лучей, делящих угол) с помощью циркуля и линейки. Общее доказательство о трисекции угла, зависимость между ней и антипараллелограммом.
реферат [1,2 M], добавлен 12.12.2009Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.
курсовая работа [398,2 K], добавлен 13.07.2010Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.
дипломная работа [359,1 K], добавлен 24.06.2011Математическое моделирование задач коммерческой деятельности на примере моделирования процесса выбора товара. Методы и модели линейного программирования (определение ежедневного плана производства продукции, обеспечивающей максимальный доход от продажи).
контрольная работа [55,9 K], добавлен 16.02.2011Градусная и радианная мера угла. Функция как соотношение между двумя числовыми множествами, размерность числового множества. Понятие множества значений некоторого угла. Элементарные тригонометрические функции произвольного угла: синус, косинус, тангенс.
реферат [239,9 K], добавлен 19.08.2009Изучение основных принципов функционирования системы оптимального слежения. Моделирование привода антенны на основе экспериментальных данных, полученных при проведении исследований динамических характеристик и параметров привода РЛС в НПО "Горизонт".
дипломная работа [1,5 M], добавлен 24.11.2010Теория массового обслуживания – область прикладной математики, анализирующая процессы в системах производства, в которых однородные события повторяются многократно. Определение параметров системы массового обслуживания при неизменных характеристиках.
курсовая работа [439,6 K], добавлен 08.01.2009Перевод мер угла в градусной системе. Соотношения между градусной и часовой системами счисления. Перевод меры угла из классического вида в секунды, в десятичный и наоборот. Алгоритм (правила) и методы его перевода. Перевод мер угла в часовой системе.
контрольная работа [50,1 K], добавлен 13.05.2009Основные определения геометрических векторов. Понятие коллинеарных и равных векторов. Простейшие операции над векторами, их проекция на ось. Понятие угла между векторами. Отсчет угла против часовой стрелки, положительная и отрицательная проекция.
реферат [187,4 K], добавлен 19.08.2009Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.
курсовая работа [565,7 K], добавлен 08.03.2016Моделирование как метод познания. Классификаций и характеристика моделей: вещественные, энергетические и информационные. Математическая модель "хищники-жертвы", ее сущность. Порядок проверки и корректировки модели. Решение уравнений методом Рунге-Кутта.
методичка [283,3 K], добавлен 30.04.2014Компьютерное моделирование в базовом курсе информатики. Роль компьютерного моделирования в процессе обучения. Методические рекомендации курса "Математические основы моделирования 3D объектов" базового курса "компьютерное моделирование".
дипломная работа [284,6 K], добавлен 07.07.2003Сущность моделирования, его главные цели задачи. Конструктивная схема и общее описание исследуемой трансмиссии. Алгоритм реализации задачи и ее программная реализация. Результаты расчета и их анализ. Исследование характеристик полученной модели.
курсовая работа [1,1 M], добавлен 01.01.2014Моделирование входного заданного сигнала, построение графика, амплитудного и фазового спектра. Моделирование шума с законом распределения вероятностей Рэлея, оценка дисперсии отсчетов шума и проверка адекватности модели шума по критерию Пирсона.
курсовая работа [2,3 M], добавлен 25.11.2011Свойства, применение и способы получения озона. Строение и виды озонаторов. Моделирование тепловых явлений в озонаторе. Физические законы тепловыделения, теплопроводности и теплопереноса. Расчет построенной модели на языке программирования Pascal.
курсовая работа [284,2 K], добавлен 23.03.2014Моделирование непрерывной системы контроля на основе матричной модели объекта наблюдения. Нахождение передаточной функции формирующего фильтра входного процесса. Построение графика зависимости координаты и скорости от времени, фазовой траектории системы.
курсовая работа [1,5 M], добавлен 25.12.2013Операторы преобразования переменных, классы, способы построения и особенности структурных моделей систем управления. Линейные и нелинейные модели и характеристики систем управления, модели вход-выход, построение их временных и частотных характеристик.
учебное пособие [509,3 K], добавлен 23.12.2009Нахождение длины сторон и площади треугольника, координат центра тяжести пирамиды, центра масс тетраэдра. Составление уравнений геометрического места точек, высоты, медианы, биссектрисы внутреннего угла, окружности. Построение системы линейных неравенств.
контрольная работа [1,2 M], добавлен 13.12.2012Рассмотрение основных методов решения школьных задач на движение двух тел в разных и одинаковых направлениях: анализ и синтез, сведение к ранее решенным, математическое моделирование (знаковые, графические модели), индукция, исчерпывающая проба.
презентация [11,8 K], добавлен 08.05.2010