Методы интегрирования дробно-рациональной функции

Рассмотрение дробно-рациональной функции; построение ее графика. Альтернативные методы построения графиком y=1/x. Ознакомление с методом неопределенных коэффициентов. Изучение правил интегрирования правильной и неправильной дробно-рациональной функций.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 28.12.2018
Размер файла 3,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Чеченский государственный педагогический университет

Факультет заочного обучения

Кафедра Математического анализа

КУРСОВАЯ РАБОТА

Тема:

МЕТОДЫ ИНТЕГРИРОВАНИЯ ДРОБНО РАЦИОНАЛЬНОЙ ФУНКЦИИ

Выполнил (а): студент гр. Бачаева М. /

Грозный 2018

СОДЕРЖАНИЕ

  • Введение
  • 1. Дробно-рациональная функция
  • 2. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
  • Заключение
  • Литература

Введение

Существует множество различных функций. Линейные, квадратные, показательные, логарифмические, тригонометрические, иррациональные, гиперболические функции, но не все они являются простыми для изучения и исследования. Функции встречают нас везде, в математике, физике, химии, медицине, во всех видах производства и строительства. В связи с этим мы должны уметь работать с ними. В своей работе я покажу, как работать с дробно-рациональными функциями, а именно, как найти интеграл от дробно-рациональной функции.

Далеко не всякая функция способна быть производной (т.е. иметь первообразную).

Любая функция, непрерывная на промежутке, имеет на этом промежутке первообразную.

Эта теорема является одной из главных в интегральном исчислении. Существует еще один вопрос: если первообразная данной функции существует, то как ее найти. Доказательство этой теоремы не содержит указаний на то, как это сделать применительно к конкретной функции. А чаще всего сделать это бывает очень не просто.

Найти интеграл для функции, или выразить её первообразную через элементарные функции довольно сложно. Данная тема является очень сложной, именно поэтому она не затрагивается в школьном курсе. [1]

Существует большое количество функций, для которых отыскание первообразных является затруднительным.

Класс дробно-рациональных функций очень широк, поэтому универсального способа их интегрирования быть не может. В этой курсовой сделаны попытки выделить наиболее характерные виды дробно-рациональных подынтегральных выражений и поставить им в соответствие метод интегрирования.

Эта тема является одной из главных в интегральном исчислении. Найти интеграл для функции, или выразить её первообразную через элементарные функции довольно сложно.

Целью курсовой работы является показать, как интегрируются дробно - рациональные функции.

Предметом исследования является методы интегрирования дробно-рациональных функций.

Объектом исследования является дробно-рациональные функции.

В соответствии с целью исследования определены следующие задачи:

1) Рассмотреть дробно-рациональные функции;

2) Показать приемы интегрирования дробно-рациональных функций;

3) Подобрать и показать методы решений типовых задач по теме исследования.

I.

1. Дробно-рациональная функция

Рассмотрим дробную рациональную функцию

,

у которой числитель и знаменатель - многочлены соответственно n-й и m-й степени. Пусть дробь - правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и при том единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

Если:

,

где k1 ... ks - корни многочлена Q (x), имеющие соответственно кратности m1 ... ms, а трёхчлены соответствуют парам сопряжения комплексных корней Q (x) кратности m1 ... mt дроби вида

называют элементарными рациональными дробями соответственно первого, второго, третьего и четвёртого типа. Тут A, B, C, к - действительные числа; m и м - натуральные числа, m, м>1; трёхчлен с действительными коэффициентами x2+px+q имеет мнимые корни.

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

График функции

получаем из графика функции 1/xm (m~1, 2, …) с помощью параллельного переноса вдоль оси абсцисс на ¦k¦ единиц масштаба вправо. График функции вида

легко построить, если в знаменателе выделить полный квадрат, а затем осуществить соответствующее преобразование графика функции 1/x2. Построение графика функции

сводится к построению произведения графиков двух функций:

y=Bx+C и

Замечание. Построение графиков функции

, ,

где a d-b c0

где n - натуральное число, можно выполнять по общей схеме исследования функции и построения графика. В некоторых конкретных примерах с успехом можно построить график, выполняя соответствующие преобразования графика; наилучший способ дают методы высшей математики.

Пример 1. Построить график функции

.

Выделив целую часть, будем иметь

.

Дробь изобразим в виде суммы элементарных дробей:

.

Построим графики функций:

После сложения этих графиков получаем график заданной функции:

(рис. 1)

рис. 1

Рисунки 2, 3, 4 представляют примеры построения графиков функций

и .

Пример 2. Построение графика функции :

(1); (2); (3); (4)

рис. 2

Пример 3. Построение графика функции:

(1); (2); (3); (4)

рис. 3

Пример 4. Построение графика функции :

(1); (2); (3); (4).

рис. 4

Альтернативный метод построения графиков y=1/x

График функции y=1/x можно построить несколько иначе. Нарисуем график функции у=x. Заменим каждую ординату величиной, ей обратной, и отметим соответствующие точки на рисунке. Получим график у=1/x (рис.5).

Рис.5

Этот приём "деления" графиков бывает полезен всегда, когда у нас есть график у=f(x), а нам нужно понять, как ведёт себя функция y=1/f(x) (рис.6).

Рис.6

2. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов

Дробно-рациональной функцией называется функция вида

где и -- многочлены (полиномы) степеней n и m соответственно:

Если , то при интегрирование такой дробно-рациональной функции выделяют целую часть а затем интегрируют.

1.

Алгоритм интегрирования

1. Выделить полный квадрат в знаменателе

2. Свести интеграл к интегралу вида

Пример:

1. выделяем полный квадрат в знаменателе

2. вводим новую переменную , тогда

3.

2.

Алгоритм интегрирования

1. Выделить полный квадрат в знаменателе, т.е. представить в виде

2. Ввести новую переменную и подставить в числитель и поделить числитель почленно на знаменатель. Тогда интеграл распадается на сумму двух интегралов, один из которых будет предыдущего вида, а другой вида

Пример:

1. выделяем полный квадрат в знаменателе

2. вводим новую переменную , тогда и числитель

3. после замена переменной интеграл приобретает вид

почленно делим числитель на знаменатель

3. Метод неопределенных коэффициентов

Рассмотрим интеграл вида , где дробь -- правильная (т.е. n<m) и полином имеет вид:

где -- вещественные корни полинома кратности которых соответственно (кратность корня -- это число повторений корня. Например полином можно представить в виде -- таким образом число повторений корня -1 равно трём). Квадратные трёхчлены соответствуют каждой паре невещественных корней полинома с кратностями . Причем сумма

По основной теореме алгебры существуют такие константы такие что , где имеет вид представима в виде суммы простейших дробей вида:

Алгоритм нахождения констант:

С правой стороны равенства приводят к общему знаменателю, а он равен . Затем в числителях слева и справа приравнивают коэффициенты при одинаковых степенях , т.е. получают систему линейных уравнений относительно коэффициентов , которая имеет единственное решение.

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1:

Приводим правую и левую часть к общему знаменателю (общий знаменатель ):

Приравниваем числители и раскрываем скобки:

Приравниваем коэффициенты при одинаковых степенях и получим систему уравнений для A, B и C

из последнего уравнения получаем, что A=-2, тогда

решая два последних уравнения получаем, что B=2 , а С=1

Таким образом,

Пример 2

2) среди корней знаменателя присутствуют действительные кратные корни, т.е.

Пример3:

3) среди корней знаменателя есть комплексные корни, т.е.

Пример 4:

4) среди корней знаменателя присутствуют кратные корн, т.е.

Пример 5:

Пример 6

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Шаг 1. Проверяем, правильная ли у нас дробь

Старшая степень числителя: 2

Старшая степень знаменателя: 8

, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.

В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель: При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится “одинокий” множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ).

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:

- то есть последовательно перебрать все степени “икса” от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 7

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле?

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат.

(4) Берём второй интеграл, в третьем - выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

А вот вам еще пара примеров для самостоятельного решения, один похожий, другой - труднее.

Интегрирование неправильной дробно-рациональной функции

Перейдем к рассмотрению случая, когда старшая степень числителя больше либо равна старшей степени знаменателя.

Пример 8

Найти неопределенный интеграл.

Совершенно очевидно, что данная дробь является неправильной:

Основной метод решения интеграла с неправильной дробно-рациональной функций - это деление числителя на знаменатель.

Сначала рисуем “заготовку” для деления:

Все недостающие степени (и (или) свободные члены) без пропусков записываем в обоих многочленах с нулевыми коэффициентами

Теперь маленькая задачка, на какой множитель нужно умножить , чтобы получить ? Очевидно, что на :

Далее умножаем сначала на , потом - на , потом - на , потом - на 0 и записываем результаты слева:

Проводим черточку и производим вычитание (из верха вычитаем низ):

Старшая степень остатка равна двум, старшая степень делителя - больше, она равна трём, значит, больше разделить не удастся. Если бы изначально у нас был в числителе многочлен пятой степени, то алгоритм деления увеличился бы на один шаг.

Итак, наше решение принимает следующий вид:

Делим числитель на знаменатель:

Что дало деление? Много хорошего: теперь у нас два слагаемых, первое - интегрируется совсем просто, а второе - правильная дробь, которую мы решать уже умеем.

После деления всегда желательно выполнять проверку. В рассматриваемом примере можно привести к общему знаменателю , и в результате получится в точности исходная неправильная дробь

От первого слагаемого сразу берем интеграл. Знаменатель дроби раскладываем на множители

Дальше всё идет по накатанной схеме:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Заключение

дробный рациональный функция интегрирование

Данная тема является не только объёмной, но и достаточно сложной, особенно, достаточно сравнить процесс вычисления производных и процесс нахождения интегралов различных функций. Это связано с тем, что существует большое количество функций, отыскать первообразную для которых не всегда легко.

В курсовой работе показано, как необходимо действовать, если перед нами ставится задача найти интеграл от функции f(x), которая является рациональной, специальными методами. Основным специальным методом является метод Остроградского, который позволяет избежать трудоёмкого интегрирования дробей четвёртого типа.

В ходе работы были выделены основные виды рациональностей, а также определены подстановки, которые позволяют рационализировать те или иные функции.

Литература

1. Белова, Т.И. Вычисление неопределенных интегралов. Обыкновенные дифференциальные уравнения. Компьютерный курс: учеб. пособие / Т.И.Белова, А.А.Грешилов, И.В.Дубограй; Ред. А.А.Грешилов. - М.: Логос, 2004. - 184 с. + 1 эл. опт. диск (CD-ROM).

2. Берман, Г.Н. Сборник задач по курсу математического анализа: учеб. пособие / Г.Н.Берман. - 22-е изд., перераб. - СПб.: Профессия, 2006. - 432 с.

3. Берман, Г.Н. Сборник задач по курсу математического анализа: учеб. пособие / Г.Н.Берман. - 22-е изд., перераб. - СПб.: Профессия, 2005. - 432 с.

4. Виноградова, И.А. Задачи и упражнения по математическому анализу: учеб. для вузов. В 2 ч. Ч.1 / И.А.Виноградова, С.Н.Олехник, В.А.Садовничий. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 725 с.

5. Виноградова, И.А. Задачи и упражнения по математическому анализу: учеб. пособие для вузов. Ч. 1. Дифференциальное и интегральное исчисление / И.А.Виноградова, С.Н.Олехник, В.А.Садовничий; Ред. В.А.Садовничий. - 3-е изд., испр. - М.: ДРОФА, 2001. - 725 с.

6. Виноградова, И.А. Задачи и упражнения по математическому анализу: учеб. пособие для вузов. Ч.2. Ряды, несобственные интегралы, ряды Фурье, преобразование Фурье / И.А.Виноградова, С.Н.Олехник, В.А.Садовничий; ред. В.А.Садовничий . - 3-е изд., испр. - М.: ДРОФА, 2001. - 712 с.

7. Голоскоков, Д.П. Уравнения математической физики. Решение задач в системе Maple: учеб. для вузов / Д.П.Голоскоков. - СПб.: Питер, 2004. - 538с.

8. Гурова, З.И. Математический анализ. Начальный курс с примерами и задачами: учеб. для втузов / З.И.Гурова, С.Н.Каролинская, А.П.Осипова; Ред. А.И.Кибзун. - М.: Физматлит, 2002. - 351 с.

9. Лукьянов, А.В. Обыкновенные дифференциальные уравнения: учеб. пособие по решению задач / А.В.Лукьянов, Ю.Д.Погуляев. - Челябинск: Полиграф-Мастер, 2006.

10. Математический анализ в вопросах и задачах: учеб. пособие для вузов / В.Ф.Бутузов, Н.Ч.Крутицкая, Г.Н.Медведев, А.А.Шишкин; Ред. В.Ф.Бутузов . - 5-е изд., испр. - М.: ФИЗМАТЛИТ, 2002. - 479 с.

11. Пискунов, Н.С. Дифференциальное и интегральное исчисления: учеб. для втузов. В 2 т. Т. 1 / Н.С.Пискунов. - Стер. изд. - М. : ИНТЕГРАЛ-ПРЕСС, 2004. - 415 с.

12. Пискунов, Н.С. Дифференциальное и интегральное исчисления: учебник для втузов. В 2 т. Т. 2 / Н.С.Пискунов. - Стер. изд. - М.: ИНТЕГРАЛ-ПРЕСС, 2004. - 544 с.

13. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления : учеб. для вузов. В 3 т. Т. 3 / Г.М. Фихтенгольц. - 8-е изд. - М.: ФИЗМАТЛИТ, 2003. - 727 с.

14. Фихтенгольц, Г.М. Основы математического анализа: учебник для вузов. Ч. 1 / Г.М. Фихтенгольц. - 6-е изд., стер. - СПб. Лань, 2005. - 440 с. - Алф. указ.: С. 434-440.

15. Фихтенгольц, Г.М. Основы математического анализа: учебник для вузов. Ч. 2 / Г.М.Фихтенгольц. - 6-е изд., стер. - СПб.: Лань, 2005. - 463 с.

16. Фихтенгольц, Г.М. Основы математического анализа: учебник. Ч. 1 / Г. М. Фихтенгольц. - 8-е изд. стер. - СПб.; М.; Краснодар: Лань, 2006. - 440 с.

17. Фихтенгольц, Г.М. Основы математического анализа: учебник. Ч. 2 / Г. М.Фихтенгольц. - 8-е изд. стер. - СПб.; М.; Краснодар: Лань, 2006. - 463 с.

18. Шипачев, В.С. Математический анализ: учеб. пособие для вузов / В.С.Шипачев. - М.: Высш. шк., 2002. - 176 с.

Размещено на Allbest.ru

...

Подобные документы

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа [253,6 K], добавлен 05.01.2015

  • Метод интервалов как один из важнейших методов математической деятельности, связанный с вопросами нахождения нулей функции или промежутков ее знак постоянства для неравенства. Алгоритм решения дробно-рационального неравенства методом интервалов.

    курсовая работа [630,7 K], добавлен 12.04.2015

  • Исследование функции, построение ее графика, используя дифференциальное исчисление. Вычисление неопределенных интегралов, используя методы интегрирования. Пределы функции. Определение области сходимости степенного ряда. Решение дифференциальных уравнений.

    контрольная работа [592,7 K], добавлен 06.09.2015

  • Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.

    контрольная работа [249,8 K], добавлен 28.03.2014

  • Вид уравнения Риккати при произвольном дробно-линейном преобразовании зависимой переменной. Свойства отражающей функции, ее построение для нелинейных дифференциальных уравнений первого порядка. Формулировка и доказательства леммы для ОФ уравнения Риккати.

    курсовая работа [709,5 K], добавлен 22.11.2014

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация [525,7 K], добавлен 11.09.2011

  • Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

    контрольная работа [111,8 K], добавлен 28.03.2014

  • Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.

    лабораторная работа [1,7 M], добавлен 05.07.2010

  • Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.

    контрольная работа [233,2 K], добавлен 28.03.2014

  • Определение констант нуля и установление эквивалентности линейных функций при помощи таблицы истинности. Нахождение минимальной дизъюнктивной нормальной формы функции с помощью метода неопределенных коэффициентов. Преобразование функции методом Квайна.

    контрольная работа [335,2 K], добавлен 05.07.2014

  • Интегрирование выражений, зависящих от тригонометрических функций. Интегрирование рациональной функции от тригонометрической и алгебраических иррациональностей. Тригонометрические подстановки для интегралов, не выражающихся через элементарные функции.

    контрольная работа [124,8 K], добавлен 22.08.2009

  • Характеристика методов численного интегрирования, квадратурные формулы, автоматический выбор шага интегрирования. Сравнительный анализ численных методов интегрирования средствами MathCAD, а также с использованием алгоритмических языков программирования.

    контрольная работа [50,8 K], добавлен 06.03.2011

  • Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.

    контрольная работа [194,2 K], добавлен 28.03.2014

  • Определение МДНФ логической функции устройства различными методами (Квайна, Петрика, неопределенных коэффициентов и др.). Составление алгоритма метода минимизации функции и разработка его рабочих программ. Выполнение синтеза схемы логического устройства.

    курсовая работа [60,2 K], добавлен 21.11.2010

  • Аппроксимация функции y = f(x) линейной функцией y = a1 + a2x. Логарифмирование заданных значений. Расчет коэффициентов корреляции и детерминированности. Построение графика зависимости и линии тренда. Числовые характеристики коэффициентов уравнения.

    курсовая работа [954,7 K], добавлен 10.01.2015

  • Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.

    контрольная работа [617,2 K], добавлен 08.07.2011

  • Вычисление предела функции, не используя правило Лопиталя. Нахождение производной функции и построение ее графика. Исследование неопределенных интегралов и выполнение проверки дифференцированием. Вычисление площади фигуры, ограниченной графиками функций.

    контрольная работа [317,3 K], добавлен 25.03.2014

  • Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.

    курс лекций [445,7 K], добавлен 27.05.2010

  • Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.

    методичка [1,0 M], добавлен 24.08.2009

  • Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.

    курсовая работа [259,9 K], добавлен 04.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.