Из истории геометрических построений циркулем и линейкой

Искусство построения геометрических фигур в Древней Греции. Построение циркулем и линейкой куба, имеющего объем вдвое больший, чем объем данного куба. Три знаменитые классические задачи древности. Решение задач на построение с помощью циркуля и линейки.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 09.04.2019
Размер файла 15,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Из истории геометрических построений циркулем и линейкой

Маликова Р.Г.

Традиционное ограничение орудий геометрических построений восходит к глубокой древности. В своей книге "Начала" Евклид (III век до н.э.) строго придерживается геометрических построений, выполняемых циркулем и линейкой, хотя названий инструментов он нигде не упоминает. Ограничения, по-видимому, были связаны с тем, что эти инструменты заменили собой веревку, первоначально служившую как для проведения прямых, так и для описания окружностей. Но многие историки математики объясняют произведенный Евклидом отбор материала тем, что он, следуя Платону и пифагорейцам, считал только прямую и круг "совершенными" линиями.

Искусство построения геометрических фигур было в высокой степени развито в Древней Греции. Древнегреческие математики еще 3000 лет назад проводили свои построения с помощью двух приборов: гладкой дощечки с ровным краем (это линейка) и двух заостренных палок, связанных на одном конце (это циркуль). Однако этих простейших инструментов оказалось достаточно для выполнения огромного множества различных построений. Древним грекам даже казалось, что любое разумное построение можно совершить этими инструментами, пока они не столкнулись с тремя знаменитыми впоследствии задачами.

Они издавна преобразовывали любую прямолинейную фигуру с помощью циркуля и линейки в произвольную прямолинейную фигуру, равновеликую ей. В частности, всякая прямолинейная фигура преобразовывалась в равновеликий ей квадрат. Поэтому понятно, что появилась мысль обобщить эту задачу: построить с помощью циркуля и линейки такой квадрат, площадь которого была бы равна площади данного круга. Это задача получила название квадратуры круга. Следы этой задачи можно усмотреть еще в древнегреческих и вавилонских памятниках второго тысячелетия до н.э.

Однако ее непосредственная постановка встречается в греческих сочинениях V века до н.э.

Еще две задачи древности привлекали внимание выдающихся ученых на протяжении многих веков. Это задача об удвоении куба. Она состоит в построении циркулем и линейкой куба, имеющего объем вдвое больший, чем объем данного куба. Ее появление связывают с легендой, что на острове Делос в Эгейском море оракул, чтобы избавить жителей от эпидемии чумы, повелел удвоить алтарь, имевший форму куба. И третья задача трисекции угла о делении угла на три равные части с помощью циркуля и линейки.

Эти три задачи, так называемые 3 знаменитые классические задачи древности привлекали внимание выдающихся математиков на протяжении двух тысячелетий. И лишь в середине XIX века была доказана их неразрешимость, то есть невозможность указанных построений лишь с использованием только циркуля и линейки. В математике это были первые результаты о неразрешимости задач, когда средства решения указаны. Они были получены средствами не геометрии, а алгебры (с помощью перевода этих задач на язык уравнений), что еще раз подчеркнуло единство математики. Не поддаваясь решению, эти проблемы обогатили математику значительными результатами, привели к созданию новых направлений математической мысли. геометрический циркуль линейка

Структура решения задачи на построение.

Решение задач на построение с помощью циркуля и линейки, состоит не в том, чтобы выполнить соответствующие построения, а в том, чтобы найти алгоритм решения, то есть, описать решение задачи в виде последовательности уже известных стандартных построений. Правильное, осмысленное решение задач на построение состоит из основных этапов: анализ, построение, доказательство (синтез), исследование.

Анализ. Составляется план решения. Для этого поступают так: предполагают задачу решенной, делают от руки примерный чертеж искомой. Нужно найти такую зависимость между данными и искомыми величинами, которая позволила бы определить положение искомой точки (отрезка или угла), на нахождение которых нацелено решение задачи.

Построение - механическое выполнение тех приемов, которые были выведены из плана решения задачи, т.е. анализа. При построении используют основные приемы (задачи на построение), т.е. любая задача на построение разбивается на конечное число шагов (простейших задач на построение).

Доказательство. Когда искомая фигура построена, необходимо доказать, что она удовлетворяет всем требованиям задачи. При этом ход рассуждений будет обратный тому, который применялся при анализе. Поэтому иногда доказательство называют синтезом.

Исследование имеет целью выяснить, всегда ли задача разрешима, сколько решений допускается (одно или несколько). Необходимо рассмотреть всевозможные частные случаи, причем нужно выяснить, меняется ли ход решения в них и как именно.

Основные построения с помощью циркуля и линейки.

Для выполнения основных построений с помощью циркуля и линейки используется метод решения, при котором искомую точку строят как точку пересечения множеств (геометрических мест), определяемых некоторыми условиями. Данный метод так и называется - метод пересечения множеств или метод геометрических мест. С помощью этих инструментов мы можем выполнить огромное множество построений. Какие простейшие построения являются стандартными? Авторы учебников [1], [6] к основным построениям в 7 классе относят:

- построить отрезок, равный данному отрезку; построить середину отрезка.

- построить перпендикуляр к прямой, построить серединный перпендикуляр.

- построить угол, равный данному углу; -построить биссектрису угла.

- построить треугольник (по трём сторонам, по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам, по двум сторонам и углу, противолежащему одной из сторон).

- построить прямоугольный треугольник (по гипотенузе и катету, по гипотенузе и острому углу).

- построить прямую, проходящую через данную точку параллельно данной прямой.

Список литературы

1. Атанасян Л.С. Геометрия 7-9. М.: Просвещение, 2005. - 335 с.

2. Гусев В.А., Медяник А.И. Дидактические материалы по геометрии для 7 класса. М.: Просвещение, 1991. - 80с.

3. Далингер В.А. Планиметрические задачи на построение. Омск: Издво ОГПИ, 1999. - 78 с.

4. Ильина Н.И. Геометрические построения на плоскости. М.: Школа - пресс, 1997. - 172 с.

5. Манин И.Ю. О разрешимости задач на построение с помощью циркуля и линейки // Энциклопедия элементарной математики. М.: Физматгиз, 1963. Т. 4: Геометрия. С. 205-227.

6. Олимпиадные задания по математике. 5-8класс/авт.-сост. С.П. Ковалева.-Волгоград: Учитель, 2007.-88с.

7. Погорелов А.В. Геометрия, 7-11. М.: Просвещение, 1992

8. Прасолов В.В. Три классические задачи на построение. М.: Наука, 1992. 80 с.

9. Энциклопедия для детей. Т. 11. Математика/Ред. коллегия: М. Аксенова, В. Володин и др. - М.: Аванта+, 2005.

10. Коренева В.Е. Решение задач на построение методом спрямления. Математика в школе.1995г. №5

11. Клименченко С.В., Цикунова Т.Д. Задачи на построение треугольников по некоторым данным точкам. Математика в школе. 1990г. №1

12. Белошистая А.В. Задачи на построение в школьном курсе геометрии. Математика в школе. 2002г. №9

13. http://ilib.mirror1.mccme.ru/djvu/geometry/alexandrov.htm

14. http://www.ref.by/refs/alike/29022.html

15. http://www.sibpatent.ru/default.asp?khid=18360&code=362335&sort=1

Размещено на Allbest.ru

...

Подобные документы

  • Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.

    курс лекций [4,0 M], добавлен 18.12.2009

  • О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.

    реферат [630,3 K], добавлен 13.04.2014

  • Исследование теоретического материала, касающегося задач, решаемых ограниченными средствами. Сущность и содержание теоремы Штейнера – Понселе. Задачи школьного курса геометрии, решаемые циркулем и линейкой, их исследование и методика разрешения.

    курсовая работа [856,1 K], добавлен 04.11.2015

  • Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.

    курсовая работа [6,4 M], добавлен 13.08.2011

  • Изучение некоторых методов построения отрезков, равных произведению или отношению двух других отрезков, с помощью циркуля и линейки. Использование произвольно выбранного единичного отрезка, а также определение произведения и деления этих отрезков.

    творческая работа [936,4 K], добавлен 04.09.2010

  • Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.

    дипломная работа [359,1 K], добавлен 24.06.2011

  • Изучение способов приближенного решения уравнений с помощью графического изображения функций. Исследование метода определения действительных корней квадратного уравнения с помощью циркуля и линейки для приведенных семи уравнений, построение их графиков.

    творческая работа [12,5 M], добавлен 04.09.2010

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа [2,0 M], добавлен 29.01.2010

  • Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа [2,3 M], добавлен 24.06.2010

  • Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".

    презентация [840,6 K], добавлен 16.01.2011

  • Вирішення геометричних задач. Побудова сторони квадрата, площа якого рівна площі даного круга. Задача про подвоєння куба: побудування ребра куба, об’єм якого вдвічі більший, за об’єм даного. Задача про розділення довільного кута на три рівні частини.

    контрольная работа [511,1 K], добавлен 18.12.2015

  • Изучение правил и норм выполнения построения геометрических тел. Способы выполнения чертежей, эскизов, наглядных изображений. Конструктивный анализ пространства. Элементы рисунка, создающие иллюзию трехмерности. Место рисунка в творческом процессе.

    курсовая работа [484,8 K], добавлен 07.04.2014

  • Использование градуированной веревки при построении перпендикуляра к прямой. Нахождение середины отрезка. Построение треугольника по двум сторонам и высоте к третьей стороне. Нахождение точки пересечения двух прямых. Построение биссектрисы угла.

    научная работа [320,4 K], добавлен 07.02.2010

  • Задача о делении угла на три равные части (трисекция угла), история ее происхождения. Построение трисектрисы угла (лучей, делящих угол) с помощью циркуля и линейки. Общее доказательство о трисекции угла, зависимость между ней и антипараллелограммом.

    реферат [1,2 M], добавлен 12.12.2009

  • Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.

    презентация [3,4 M], добавлен 18.04.2013

  • Линейные операции над векторами. Скалярное произведение двух векторов. Векторное произведение векторов. Графическое решение систем неравенств. Построение графиков функций с помощью геометрических преобразований. Простейшие геометрические преобразования.

    методичка [2,0 M], добавлен 15.06.2015

  • Использование геометрических форм и линий в практической деятельности человека. Геометрия у древних людей. Природные творения в виде геометрических фигур, их распространение в животном мире. Геометрические комбинации в архитектуре, сфере транспорта, быту.

    реферат [21,5 K], добавлен 06.09.2012

  • Из истории геометрии, науки об измерении треугольников. Замечательные точки треугольника. Использование геометрических фигур в орнаментах древних народов. Бильярдная рамка, расстановка кеглей в боулинге. Бермудский треугольник. Построения прямых углов.

    презентация [9,2 M], добавлен 02.10.2011

  • Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

    реферат [1,1 M], добавлен 25.09.2009

  • Особенности использования метода секущих плоскостей для создания проекции и разветки пересечения поверхностей фигур. Порядок построения изометрии взаимного пересечения поверхностей фигур. Характеристика процесса создания фигуры с вырезом, опоры и стойки.

    реферат [21,3 K], добавлен 27.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.