Взаимное пересечение поверхностей
Построение линии пересечения двух поверхностей в частном и в общем случаях. Характеристика особого случая построения линии пересечения двух поверхностей. Особенности процесса построения линии пересечения поверхностей способом секущих плоскостей.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 02.04.2019 |
Размер файла | 14,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Взаимное пересечение поверхностей
Все случаи пересечения поверхностей можно свести к следующему:
- частный случай. Одна из пересекающихся поверхностей является проецирующей (цилиндр, призма). Линия пересечения на одном из видов совпадает с линей - проекцией проецирующей поверхности;
- общий случай. Ни одна из пересекающихся поверхностей не является поверхностью проецирующей. Линия пересечения не определена ни на одном из видов;
- особый случай. Линия пересечения распадается на две плоские кривые.
Построение линии пересечения двух поверхностей в частном случае
Если одна из пересекающихся поверхностей проецирующая, то задача построения линии пересечения двух поверхностей упрощается и сводится к построению недостающих проекций кривой линии на одной из поверхностей по одной заданной проекцией линии. На рис. 4.8 горизонтальная проекция линии пересечения сферы и призмы совпадает с горизонтальной проекцией призмы. Фронтальная проекция линии пересечения построена по принадлежности сфере с помощью параллелей сферы.
Построение характерных точек эллипса грани аb. Центр его О является фронтальной проекцией основания перпендикуляра, опущенного из центра сферы на плоскость грани ab. Большая ось (1-2) - вертикальна и равна диаметру окружности. Точки 1 и 2 являются также высшей и низшей точками окружности. Малая ось 3-4 совпадает с проекцией экватора, причем точки 3 и 4 очевидны. Также очевидны точки 5 и 6 , лежащие на главном меридиане. Точки 7 и 8, лежащие на ребре b призмы, найдены с помощью параллели k. Отрезок эллипса 7-4-8 находится за пределами грани аb и показан вследствие этого тонкой линией.
Аналогично строится линия пересечения грани bc.
Построение окружности грани ас очевидно.
На фронтальной проекции часть эллипса от точки 5 до точки 7и от точки 8 до точки 6 грани ab (передней), находящейся на передней половине сферы, видна. Часть эллипса 5-3-6, расположенная на задней половине сферы, не видна. Аналогичная видимость эллипса другой передней грани - bc. Окружность, лежащая на задней грани ac призмы, полностью не видна.
На рис. 4.9 показано построение линии пересечения цилиндра и полусферы. Горизонтальная проекция линии пересечения совпадает с очерком горизонтальной проекции цилиндра.
Очевидными точками линии пересечения являются точки 1 и 2, в которых главный меридиан сферической поверхности пересекается с поверхностью цилиндра.
Для построения характерных точек линии пересечения используются параллели сферы. линия пересечение плоскость секущая
Низшая и высшая точки линии пересечения 5 и 6 находятся на тех образующих цилиндра, которые лежат на линии центров О1-О2.
Плавная кривая, соединяющая все найденные точки, представит фронтальную проекцию линии пересечения.
Построение линии пересечения двух поверхностей в общем случае
Построение линии взаимного пересечения поверхностей заключается в следующем:
- проводят несколько вспомогательных поверхностей, пересекающих данные поверхности;
- строят линии, по которым вспомогательные поверхности пересекают каждую из данных поверхностей;
- находят точки, в которых построенные линии пересекаются между собою;
- соединяют найденные точки в правильной последовательности и получают линию, по которой данные поверхности пересекаются между собою.
В качестве вспомогательных поверхностей - поверхностей-посредников - могут применяться плоскости и кривые поверхности - цилиндрические, конические, сферические. Чаще других поверхностями-посредниками являются плоскости частных и общего положений, а также сферические поверхности.
Вспомогательные поверхности подбираются так, чтобы они пересекали данные поверхности по простым для построения линиям - прямым и окружностям.
Приступая к построению линии пересечения, прежде всего, выявляют ее так называемые очевидные, иначе явные точки, то есть точки, которые для своего нахождения не требуют каких-либо построений и усматриваются непосредственно из задания.
В следующую очередь находят особые, характерные, иначе опорные точки линии пересечения. К таким точкам относятся точки, лежащие на очерках проекций данных поверхностей, то есть точки, отделяющие видимую часть линии перехода от невидимой, крайние точки - правая, левая, высшая и низшая, точки - ближайшая к наблюдателю и наиболее удаленная от него.
В последнюю очередь, находят все остальные точки линии пересечения, которые называются промежуточными или случайными. Эти точки определяются в тех участках искомой кривой, где она недостаточно выявлена ранее построенными точками.
Построение линии пересечения поверхностей способом секущих плоскостей
Для построения точек этой линии могут быть выбраны только вспомогательные горизонтальные плоскости, расположенные перпендикулярно к осям поверхностей, так как они пересекают их по окружностям.
Характерные точки 1 и 2, расположенные на очерковых линиях фронтального изображения, находятся в плоскости общей симметрии данных поверхностей. Эта плоскость является фронтальной, поэтому точки 1 и 2 очевидны.
Точки 3 и 4 на экваторе тора найдены с помощью плоскости 1, которая пересекает тор по экватору k, а коническую поверхность - по окружности m1. Горизонтальные проекции линий k и m1 пересекаются в точках 3 и 4. Они, очевидно, расположены на линии, перпендикулярной к плоскости . Поэтому фронтальные проекции точек 3 и 4 совпадают.
Промежуточные точки 5 и 6 найдены с помощью второй горизонтальной плоскости 2. Фронтальные проекции точек 5 и 6 также совпадают.
Не вся построенная кривая видна на фронтальной проекции: половина ее находится на задней стороне данных поверхностей. Но невидимая ее часть закрывается видимой. На горизонтальной проекции видна часть 3-1-4 кривой, расположенная выше экватора тора (видимость меняется в точках 3 и 4, лежащих на экваторе).
Особый случай построения линии пересечения двух поверхностей
Линия пересечения кривых поверхностей в общем случае представляет кривую пространственную (точки которой не лежат в одной плоскости), но в некоторых частных случаях эти линии могут оказаться кривыми плоскими.
Это имеет место тогда, когда пересекающиеся поверхности являются поверхностями вращения второго порядка с пересекающимися осями и к тому же описаны вокруг общей для них сферической поверхности, имеющий центр в точке пересечения их осей.
На рис. 4.11 - 413 показаны такие случаи пересечения поверхностей вращения: двух цилиндров, цилиндра с конусом, двух конусов.
Во всех этих случаях каждая пара поверхностей пересекается по двум эллипсам.
Размещено на Allbest.ru
...Подобные документы
Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.
реферат [5,4 M], добавлен 10.01.2009Особенности использования метода секущих плоскостей для создания проекции и разветки пересечения поверхностей фигур. Порядок построения изометрии взаимного пересечения поверхностей фигур. Характеристика процесса создания фигуры с вырезом, опоры и стойки.
реферат [21,3 K], добавлен 27.07.2010Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.
методичка [2,0 M], добавлен 18.02.2015Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
методичка [4,2 M], добавлен 03.02.2013Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.
дипломная работа [1,4 M], добавлен 06.06.2011Теорема о проецировании прямого угла, возможные три случая такого проецирования. Главные линии плоскости: линии уровня и линии наибольшего наклона. Прямая, перпендикулярная к плоскости и ее проекции. Условие взаимной перпендикулярности двух плоскостей.
реферат [463,3 K], добавлен 17.10.2010Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.
курсовая работа [132,8 K], добавлен 28.06.2009Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.
контрольная работа [329,5 K], добавлен 19.12.2014Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.
реферат [2,0 M], добавлен 19.05.2014Использование градуированной веревки при построении перпендикуляра к прямой. Нахождение середины отрезка. Построение треугольника по двум сторонам и высоте к третьей стороне. Нахождение точки пересечения двух прямых. Построение биссектрисы угла.
научная работа [320,4 K], добавлен 07.02.2010История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.
реферат [608,8 K], добавлен 23.04.2015Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.
дипломная работа [2,0 M], добавлен 18.05.2013Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.
курсовая работа [1,6 M], добавлен 01.02.2014Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".
контрольная работа [1,9 M], добавлен 23.12.2015Уравнение прямой, проходящей через данную точку перпендикулярно заданному нормальному вектору. Условия параллельности и перпендикулярности двух прямых. Условия пересечения, параллельности или совпадения двух прямых, заданных общими уравнениями.
презентация [13,8 M], добавлен 19.12.2022Тела Платона, характеристика пяти правильных многогранников, их место в системе гармоничного устройства мира И. Кеплера. Агроритм построения треугольника средствами Mathcad. Формирование матрицы вершины координат додекаэдра, график поверхности.
курсовая работа [644,0 K], добавлен 19.12.2010Виды точек регулярной поверхности. Удельная кривизна выпуклой поверхности. Сфера как единственная овальная поверхность постоянной средней кривизны. Основные понятия и свойства седловых поверхностей. Неограниченность седловых трубок и проблема Плато.
лабораторная работа [1,6 M], добавлен 29.10.2014Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.
реферат [1,1 M], добавлен 25.09.2009Применение старинного японского искусства складывания и сгибания различных фигурок из бумаги (оригами) в занимательной математике. Задача о "линии сгиба листа", пентаграммы, построение параболы путем построения семейства касательных по линии сгиба листа.
творческая работа [395,5 K], добавлен 18.01.2011Замечательные линии 3-го порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска. Площадь области, ограниченной лемнискатой.
курсовая работа [1,1 M], добавлен 07.08.2015