Раскраски в теории графов
Правила раскраски графа, приписывание цветов его вершинам с условием, что никакие смежные вершины не получают одинакового цвета. Алгоритм приближенного решения задачи определения хроматического числа и построения минимальной раскраски произвольного графа.
Рубрика | Математика |
Предмет | Теория графов |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Кушнир И.А. |
Дата добавления | 28.05.2019 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Алгоритм, использующий метод Магу-Вейссмана. Общие сведения, описание, вызов и загрузка, функциональное назначение и программный код программы. Описание логической структуры и инструкция пользователю, решение контрольных примеров раскраски графа.
курсовая работа [350,5 K], добавлен 20.12.2009Примеры решения задач по заданию графов. Определение основных характеристик графа: диаметра, радиуса, эксцентриситета каждой вершины. Вычисление вершинного и реберного хроматического числа. Упорядоченность матричным способом и построение функции.
контрольная работа [224,6 K], добавлен 05.07.2014История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.
курсовая работа [636,2 K], добавлен 20.12.2015Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.
контрольная работа [466,3 K], добавлен 11.03.2011Задача о кенигсбергских мостах, четырех красках, выходе из лабиринта. Матрица инцидентности для неориентированного и (ориентированного) графа. Степень вершины графа. Ориентированное дерево. Линейные диаграммы или графики Ганта. Метод критического пути.
презентация [258,0 K], добавлен 23.06.2013Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа [625,4 K], добавлен 30.09.2014Понятие и матричное представление графов. Ориентированные и неориентированные графы. Опеределение матрицы смежности. Маршруты, цепи, циклы и их свойства. Метрические характеристики графа. Применение теории графов в различных областях науки и техники.
курсовая работа [423,7 K], добавлен 21.02.2009Понятие "граф". Отношения между разнородными элементами. Матричное представление графов. Операции над графами. Маршруты, цепи, циклы. Метрические характеристики графа. Приложение теории графов в различных областях науки и техники. Листинг программы.
курсовая работа [725,8 K], добавлен 15.12.2008Применение интервальных графов. Алгоритмы распознавания интервальных графов: поиск в ширину, поиск в ширину с дополнительной сортировкой, лексикографический поиск в ширину, алгоритм "трех махов". Программа задания единичного интервального графа.
курсовая работа [1,5 M], добавлен 10.02.2017Нахождение минимального пути от фиксированной до произвольной вершины графа с помощью алгоритма Дейкстры, рассмотрение основных принципов его работы. Описание блок-схемы алгоритма решения задачи. Проверка правильности работы разработанной программы.
курсовая работа [495,4 K], добавлен 19.09.2011Алгоритм построения минимального остовного дерева. Последовательность выполнения алгоритма Прима, его содержание и назначение. Процедура рисования графа. Порядок составления и тестирования программы, ее интерфейс, реализация и правила эксплуатации.
курсовая работа [225,0 K], добавлен 30.04.2011Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.
презентация [430,0 K], добавлен 19.11.2013Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.
лабораторная работа [85,5 K], добавлен 09.01.2009Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.
дипломная работа [272,5 K], добавлен 05.06.2014Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.
презентация [27,1 K], добавлен 12.04.2014Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.
курсовая работа [1006,8 K], добавлен 23.12.2007Алгоритм перехода к графическому представлению для неориентированного графа. Количество вершин неориентированного графа. Чтение из матрицы смежностей. Связи между вершинами в матрице. Задание координат вершин в зависимости от количества секторов.
лабораторная работа [34,0 K], добавлен 29.04.2011Понятие "граф" и его матричное представление. Свойства матриц смежности и инцидентности. Свойства маршрутов, цепей и циклов. Задача нахождения центральных вершин графа, его метрические характеристики. Приложение теории графов в областях науки и техники.
курсовая работа [271,1 K], добавлен 09.05.2015Элементы теории графов. Центры и периферийные вершины графов, их радиусы и диаметры. Максимальный поток транспортировки груза и поток минимальной стоимости. Пропускная способность пути. Анализ сетей Петри, их описание аналитическим и матричным способами.
задача [1,3 M], добавлен 28.08.2010Понятие и внутренняя структура графа, его применение и матричное представление (матрица инциденций, разрезов, цикломатическая, Кирхгофа). Специальные свойства и признаки графов, решение оптимизационных задач. Венгерский алгоритм, матричная интерпретация.
курсовая работа [664,6 K], добавлен 24.12.2013