Математик Эйлер и его научные труды
Биография Л. Эйлера - автора работ по математическому анализу, дифференциальной геометрии, теории чисел, приближенным вычислениям. Научные труды Л. Эйлера: ряд Эйлера-Маклорена, задача о колебании струны, волновое уравнение. Обобщение теоремы Ферма.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 16.06.2019 |
Размер файла | 494,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Частное учреждение образовательная организация высшего образования
Омская гуманитарная академия
Контрольная работа
Математик Эйлер и его научные труды
по учебной дисциплине: История математики
Фадеева А.В.
Омск, 2018
Содержание
Введение
1. Биография Л. Эйлера
2. Научные труды Л. Эйлера
2.1 Ряд Эйлера-Маклорена
2.2 Задача о колебании струны. Волновое уравнение (решение Эйлера)
2.3 Обобщение Эйлером теоремы Ферма
2.4 Формула Эйлера
2.5 Работы Эйлера в геометрии
2.6 Комбинаторика
2.7 Задача о семи мостах Кёнигсберга
Заключение
Список использованной литературы
Введение
Л. Эйлер - самый продуктивный математик в истории, автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др. Многие его работы оказали значительное влияние на развитие науки.
Почти полжизни Эйлер провёл в России, где энергично помогал создавать российскую науку. В 1726 году он был приглашён работать в Санкт-Петербург. В 1731--1741 и начиная с 1766 года был академиком Петербургской Академии Наук (в 1741-1766 годах работал в Берлине, оставаясь почётным членом Петербургской Академии). Хорошо знал русский язык, часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики по математике (С. К. Котельников), и по астрономии (С. Я. Румовский) были учениками Эйлера. Некоторые из его потомков до сих пор живут в России.
Л.Эйлер внес очень большой вклад в развитие математического анализа.
1. Биография Л. Эйлера
Леонард Эйлер родился в 1707 г. в городе Базеле и первые уроки математики получил от отца, пастора Пауля Эйлера (1670-1745). Сам же отец обучался этому предмету у И. Бернулли в 1688 г., защитившего диссертации по теории отношении и пропорции. Отец предназначал сына также в пасторы, но склонность к математике взяла верх. Во времена учебы в Базельском университете (1720 - 1724 гг.) Леонард Эйлер под руководством Иоганна Бернулли дополнительно изучал математику и механику.
Рисунок 1 - Базельский университет в XVII--XVIII веках
В 1725-1726 гг. молодой дилер выступил с первыми самостоятельными работами: об изохронных кривых в сопротивляющейся среде, о специальном виде траектории, о наилучшем расположении мачт на корабле. Эта работа была представлена на конкурсе Парижской академии и принята к печати, хотя премию так и не получила. Диссертация о звуке была написана в связи с намерением Эйлера участвовать в конкурсе на вакансию профессора физики в Базельском университете. Должности здесь замещались тогда путем жребия среди отобранных кандидатов. Эйлер не был допущен к жеребьевке, вероятно, из-за своего молодого возраста. Но бля Эйлера это не оказалось большим горем, так как в то время перед ним могла открыться более широкая перспектива деятельности.
Действительно, делая попытку устроиться на родине, Эйлер уже имел приглашение в Петербургскую академию наук. Данное предложение в 1725 г. ему выслали сыновья его учителя Даниил и Николай II Бернулли, которые в то время работали в данной академии.
Эйлер принял это приглашение и весной 1727 г. приехал в русскую столицу. Вначале предполагалось, что он займет свободную должность адъюнкта, т. с. младшего академика, по физиологии с тем, чтобы применить к этой науке математические методы. Перед поездкой Эйлер несколько месяцев штудировал анатомию и медицину, к которым, впрочем, не имел никакого призвания. Но в Петербурге все уладилось наилучшим образом: ему предоставили возможность работать в области математических наук. Несколько позднее это было оформлено официально. В январе1731 г. Эйлер получил место профессора, т. е. академика по физике, а летом 1733 г. заместил уехавшего Д. Бернулли на кафедре математики.
В благоприятных условиях крупной академии, в регулярном общении с другими учеными - математиками, механиками, астрономами, физиками - гениальность Эйлера быстро проявилась во всей полноте. Он принимал активное участие в различных академических мероприятиях, требовавших применения математики: составлении географических карт, различных технических экспертизах, решении многочисленных задач кораблестроения и кораблевождения, в составлении учебных руководств и отзывов на поступавшие сочинения и т. д.
В задачах практики рождались стимулы и для многих теоретических исследований Эйлера, которые составляли главный предмет его неустанных размышлений.
Открытия его, печатавшиеся в академических «Записках» со второго их тома за 1727 г. (1729) и нередко получавшие известность еще до публикации благодаря его научной переписке, вскоре привлекли внимание ученого мира Европы. Слава его росла из года в год. Это своеобразно выразил в своих письмах к Эйлеру его прежний наставник Иоганн Бернулли, именуя его в 1728 г. «ученейшим и даровитейшим юным мужем», в 1731 г. «славнейшим и ученейшим господином профессором, дражайший другом» и, наконец, в 1710 г. «главой математиков» (Mathematicorum princeps) [2]. В это время Эйлер был членом двух академии - Петербургской и Берлинской. Несколько спустя его избрали своим иностранным членом Лондонское королевское общество (1749) и Парижская академия наук (1755).
Эйлер прожил в Петербурге 14 лет. Только часть подготовленных им в то время рукописей была тогда издана; за эти годы их вышло около 55, в том числе двухтомная «Механика» (1736). Летом 1741 г. Эйлер переехал в Берлин, куда его пригласил прусский король Фридрих II, который желал поднять на высокий уровень деятельность Берлинской академии наук, влачившей при его предшественнике самое жалкое существование. В вязи с весьма неустойчивой и беспокойной политической обстановкой в Петербурге, которая отражалась на деятельности Академии наук, Эйлер принял приглашение.
Возглавляя Математический класс в качестве его директора, Эйлер сохранил звание почетного члена Петербургской академии (с постоянной пенсией), фактически же оставался ее иногородним действительным членом. Сил его хватало для совершенно полноценного «совместительства» в двух академиях, свои сочинения он публиковал почти поровну в изданиях обеих и даже обе вместе они не справлялись с своевременной публикацией неиссякаемого потока его трудов. Помимо того, что он выполнял поручения прусского правительства по гидротехнике, баллистике, организации лотерей и проч., он редактировал математические отделы берлинских и петербургских академических записок, годами руководил занятиями живших у него на квартире молодых русских ученых - С.К. Котельникова, С.Я. Румовского, М. Софронова (1729-1760), участвовал в организации научных конкурсов обеих академий, вел живую переписку с немецкими университетскими профессорами и петербургскими академиками, в том числе М.В. Ломоносовым, подыскивал для нашей академии сотрудников, закупал для нее инструменты и книги. Силы Эйлера в зрелые годы кажутся неистощимыми. Продолжая осуществлять планы, намеченные в Петербурге, подготовляя или завершая фундаментальные трактаты по всем отделам анализа, он включает в круг занятий новые вопросы алгебры и теории чисел, эллиптические интегралы, уравнения математической физики, тригонометрические ряды, дифференциальную геометрию поверхностей, задачи топологии, механику твердого тела, гидродинамику, теорию движения Луны и планет, оптику, магнетизм и в каждой из перечисленных областей получает значительные и нередко первостепенные результаты.
Во время проживания в Берлине издаются такие монографии Эйлера как «Новые принципы артиллерии» (1745 г.), «Теория движения твердых тел» (Росток-Грейфсвальд, 1705), «Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума» (Лозанна-Женева, 1744), «Новые принципы артиллерии» (Берлин, 1745) двухтомное «Введение в анализ бесконечных» (Лозанна, 1748), двухтомная «Морская наука» (Петербург,1740), изданные в Берлине за счет Петербургской академии «Теория движения Луны» (1753), «Дифференциальное исчисление» (1755). В общей сложности было издано 260 работ.
Перед Эйлером не раз поднимался вопрос о возвращении в Петербургскую академию. В 60-е годы отношения между Эйлером и Фридрихом II, и ранее не питавшими взаимной симпатии, резко ухудшились. Эйлер, который воспитывался в протестантской традиции, и Фридрих II, прусский абсолютный монарх, поклонник вольтерианского вольнодумства, расходились в очень многом, в том числе и в отношении к математике, которая была для Эйлера делом всей его жизни и в которой король, почти вовсе не знавший ее, ценил только непосредственные и немедленные практические приложения. После смерти в 1759 г. Мопертюи, король предложил место президента Даламберу, а когда тот отказался, поручил Эйлеру управлять академией без президентского титула и под своим личным руководством. Разногласия в некоторых финансовых и административных вопросах повлекли за собой разрыв между ученым и королем. Используя свое швейцарское подданство и поддержку русского правительства, Эйлер добился отставки и летом 1760 г. навсегда вернулся в Петербург.
Идейный порыв Эйлера в молодые и зрелые лета продолжал давать великолепные результаты и в старости. Около 300 статей и фрагментов увидело свет уже после его смерти. При всем многообразии интересов Эйлера центральное место в них принадлежит анализу. Из 30 томов математической серии его собрания сочинений 19 отведено анализу, за этим идут теория чисел, геометрия, алгебра и комбинаторика с теорией вероятностей. К тому же большинство геометрических работ Эйлера посвящено исследованию кривых и поверхностей с помощью алгебры и исчисления бесконечно малых, а многие труды его по механике (их также 30 томов) содержат новые математические приемы решения дифференциальных уравнений, интегрирования функций и т. д. В наших курсах анализа большое число формул и методов до сих пор носит имя Эйлера, и оно встречается, пожалуй, чаще других имен. Но, помимо отдельных приемов и формул, мы обязаны Эйлеру основанием нескольких больших дисциплин, которые лишь в зачаточной форме существовали ранее: теории дифференциальных уравнений - обыкновенных и с частными производными, вариационного исчисления, элементарной теории функций комплексного переменного. Также он положил начало теории суммирования рядов, разложениям функций в тригонометрические ряды, теории специальных функций и определенных интегралов, дифференциальной геометрии поверхностей и, наконец, теории чисел, как особой науке.
Эйлер был неутомимым «вычислителем» как в узком, так и в широком смысле слова и, пожалуй, как никто, владел техникой расчетов. Эта особенность его гения отвечала потребности науки того времени, особенно нуждавшейся в быстром развитии формального аналитического аппарата. Но Эйлер был и мыслителем, внесшим огромный вклад в разработку фундаментальных идей математики, без чего также невозможно было се развитие, таких, как понятия числа, функции, функционала, суммы ряда, интеграла, решения дифференциального уравнения и т. д. Вместе с тем он создавал новую алгебраически-арифметическую архитектуру анализа. Правда, Эйлер уступал в построении обобщающих концепций более молодому Лагранжу, который ярче отразил в своей теории аналитических функций и аналитической механике духовные устремления эпохи просвещения, в других сферах мышления, приведших к созданию новых больших философских, исторических, социально-политических систем. Не следует, однако, забывать, что Лагранж во многом непосредственно следовал за Эйлером, углубляя и совершенствуя его методы и концепции.
Влияние Эйлера было исключительно велико. Лаплас повторял молодым математикам: читайте Эйлера, он наш общий учитель. Прямых учеников у Эйлера было немного, по его труды были настольными в XVIII в. и далеко за его пределами для всех творческих математиков, а работу многих он непосредственно направлял путем переписки.
2. Научные труды Эйлера
Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук[36]. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков.
Эйлер охотно участвовал в научных дискуссиях, из которых наибольшую известность получили:
· спор о струне;
· спор с Д'Аламбером о свойствах комплексного логарифма;
· спор с Джоном Доллондом о том, возможно ли создать ахроматическую линзу.
Во всех упомянутых случаях позиция Эйлера поддержана современной наукой.
эйлер математический анализ
2.1 Ряд Эйлера-Маклорена
Эйлер и независимо от него, Маклорен открыли общий прием суммирования, примерами которого являются результаты Ньютона и Стирлинга и который выражает частную сумму бесконечного ряда sn = ? u (k) через другой ряд, члены которого содержат общий член u (n), его интеграл и производные.
Впервые Эйлер привел формулу суммирования без доказательства и примеров употребления в работе 1732 г. «Общий метод суммирования рядов» (Methodus generalis summandi progressiones. Commentarii, (1732 -1733) 1738), вывод ее дан в статье «Отыскание суммы ряда по данному общему члену», представленной Петербургской академии в 1735 г. (Inventiosummae enjusque seriei ex dato termino generali. Commentarii, (1736-1741).
В этой статье ряд Тейлора записан в дифференциальных обозначениях. Обозначая общий член ряда X и сумму его х членов S, Эйлер разложил S (х-1) в ряд Тейлора, а X в ряд, из которого затем получил выражение S через X и его производные. Для этого он представил dS/dx рядом с неопределенными коэффициентами вида, так что (постоянная интегрирования удовлетворяет тому условию, что при х = 0 также X = 0 и S = 0).
Далее он дифференцированием нашел выражение для d2S/dx2, d3S/dx3 и т. д. и подставил их, вместе с выражением для dS/dx, в разложение функции X, после чего, применяя метод неопределенных коэффициентов, получил уравнения, определяющие каждое из чисел б, в, г, д, е.... через все предшествующие (считая после первогоб); это позволяет последовательно вычислить б = 1, в = 1/2, г = 1/l2,д = 0, е = - 1/720, и т. д.
Еще раньше Эйлер обнаружил, что отношение двух последовательных чисел Бернулли B2n+2:B2n c ростом индекса неограниченно возрастает по абсолютной величине (Commentarii, (1739-1750). Поэтому бесконечный ряд Эйлера-Маклорена, вообще говоря, расходится. Тем не менее, формула суммирования может доставлять превосходные приближения, если ограничиваться частными суммами ряда с надлежащим числом членов.
В упомянутой статье Эйлер дал новый способ вычисления р, исходя из равенства arctg, приближенной замены интеграла на сумму и оценки разности arctg t - S по формуле суммирования. Полагая t = 1, Эйлер получил и при n = 5 подсчитал 12 верных десятичных знаков. Особенности поведения ряда он охарактеризовал при этом исчерпывающим образом и указал, что для приближенного вычисления следует взять сумму тех первых членов ряда, которые убывают до наименьшего включительно. Он даже сделал попытку оценить в данном случае степень приближения по числу использованных членов и первому отброшенному члену, но приведенную им оценку не обосновал.
Асимптотические ряды получили важные применения также у Лагранжа, Лапласа, Лежандра, который назвал эти ряда полусходящимися (series demi-convergentes), и других ученых. Впоследствии их изучали Коши, Пуассон, которые дали первые выражения остаточного члена, Якоби, Лобачевский, Остроградский и т. д. В широком плане к построению теории асимптотических разложений приступил Л. Пуанкаре (1886). Сама формула суммирования Эйлера - Маклорена является теперь одной из основных в теории конечных разностей и ее приложениях.
2.2 Задача о колебаниях струны. Волновое уравнение (решение Эйлера)
Эйлер сначала выводит уравнение колебания струны. Затем он формулирует требование отыскания общего решения этого уравнения при произвольно заданной фигуре струны. О начальной скорости струны прямо не говорится, но из дальнейших выкладок вытекает, что она считается равной нулю. При этих условиях Эйлер нашел решение, которое, по его собственному признанию, по форме существенно не отличается от решения Даламбера. Эйлер решил уравнение (1) при любом постоянном а, и потому его решение имеет вид:
у = ц (х + at) + ш(х - at),
где ц и ш - функции, определяемые из граничных и начальных условий задачи так же, как это сделано у Даламбера.
В 1766 г. Эйлер предложил новый метод решения уравнения колебании струны, вошедший затем в третий том его «Интегрального исчисления» (1770), а позднее - во все учебники по дифференциальным уравнениям. Вводя новые координаты: u= х + at, v = х - at, он преобразовал уравнение колебания струны к легко интегрируемому виду
По современной терминологии координаты u и v Эйлера называются характеристическими. В этих координатах от вторых производных функции остается только смешанная производная. Эйлер первый понял, что уравнение колебания струны отражает процесс распространения волн. Волной при этом называют процесс передвижения отклонения какой-либо точки струны по струне.
2.3 Обобщение Эйлером теоремы Ферма
В последней статье Эйлер обобщил теорему Ферма, установив (в обозначениях, ведущих свое происхождение от Гаусса), что aц (m) ? 1 (mod m), где ц(m) есть число чисел, взаимно простых с m и меньших m. Встречающееся здесь число ц (m), которое по предложению Гаусса называют теперь «функцией Эйлера», последний представил в той же работе в виде ц (m)=m(1-1/p) (1-1/p,)…, где р, p,,… - простые делители числа m.
Если m само есть простое число, то числа 1, 2, 3,..., (р - 1) будут с ним взаимно простыми, и получается важная теорема, высказанная Дж. Вильсоном и опубликованная в 1770 Варингом в его «Алгебраических размышлениях». Теорема эта гласит, что величина 1*2*3... (р-1)+1 делится без остатка на p, где р, как и всюду здесь, - простое число. Эта теорема, как и теорема Ферма, заключается в установленном Лагранжем общем сравнении xp-1 - 1 ? (x + l) (x + 2)...(x + р - 1) (mod р) при x = 0. Она была также доказана Эйлером («Аналитические сочинения», I, 1783) и Гауссом («Арифметические исследования», 1801). Упрощенное доказательство теоремы Ферма дал еще И.Г. Ламберт, охотно занимавшийся и теорией чисел (Nov. Acta Enid., 1769).
К важнейшим достижениям в исследовании целых чисел Эйлера привели старания доказать другую, упоминавшуюся уже, теорему Ферма о том, что всякое простое число вида 4т + 1 разбивается на сумму двух квадратов. Эйлер многократно и с различных сторон подходил к этой теореме и при этом нашел ряд интересных предложений. Окончательно доказать ее Эйлеру удалось лишь в 1749 [Nov. Comm. Ac. Petr., 1754/55 (1760)], воспользовавшись тем ходом мыслей, которым он шел в первом доказательстве теоремы о сравнении аm ? 1 (mod р). Это привело его к рассмотрению остатков от деления квадратов 12, 22, З2,..., (р-1)2 на простое число р. Эйлер немедленно увидел, что при этом получаются «многие замечательные свойства, изучение которых проливает немало света на природу чисел».
Таким образом, он впервые поставил вопрос о квадратичных вычетах и понял их значение. Здесь уже встречаются и термины: вычеты (residua) и невычеты (поп residua).
2.4 Формула Эйлера
Формула Эйлера названа в честь Леонарда Эйлера, который её ввёл, и связывает комплексную экспоненту с тригонометрическими функциями. Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство: eix = cosx + isinx
Формула Эйлера впервые была приведена в книге «Гармония мер» английского математика, помощника Ньютона, Роджера Котса (1722 год, издана посмертно). Котс открыл формулу около 1714 года и выразил её в логарифмической форме: ln (cosx + isinx) = ix.
Эйлер опубликовал формулу в её привычном виде в статье 1740 года и в книге «Введение в анализ бесконечно малых» (1748), построив доказательство на равенстве бесконечных разложений в степенные ряды правой и левой частей. Ни Эйлер, ни Котс не представляли себе геометрической интерпретации формулы: представление о комплексных числах как точках на комплексной плоскости появилось примерно 50 лет спустя. Показательная и тригонометрические формы комплексных чисел связаны между собой формулой Эйлера. Пусть комплексное число z в тригонометрической форме имеет вид z = r(cosц + isinц) На основании формулы Эйлера выражение в скобках можно заменить на показательное выражение. В результате получим: z = reiц Эта запись называется показательной формой комплексного числа. Так же, как и в тригонометрической форме, здесь r = |z|, ц = argz
2.5 Работы Эйлера в геометрии
В элементарной геометрии Эйлер обнаружил несколько фактов, не отмеченных Евклидом:
· три высоты треугольника пересекаются в одной точке (ортоцентре);
· в треугольнике ортоцентр H, центр описанной окружности U и центр тяжести S (он же -- центроид) лежат на одной прямой -- «прямой Эйлера»
Рисунок 2 - На «прямой Эйлера» также лежит центр окружности Эйлера (центр окружности девяти точек)
· В треугольнике ABC ортоцентр H, центр U описанной окружности и центроид S лежат на одной «прямой Эйлера»
Рисунок - 3. Уточнение теоремы Эйлера. Прямая Эйлера (красная) проходит через центр описанной окружности треугольника, его ортоцентр, центр тяжести и центр окружности девяти точек
· основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности («окружности Эйлера»);
· число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В-Р+Г=2 (в современной трактовке число 2 здесь выступает как важнейший топологический инвариант выпуклого многогранника -- его эйлерова характеристика, а сам этот результат Эйлера, полученный в 1758 году, положил начало накоплению фактов топологии).
Второй том «Введения в анализ бесконечно малых» (1748) -- это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Эйлер дал классификацию алгебраических кривых 3-го и 4-го порядков, а также поверхностей второго порядка. Термин «аффинные преобразования» впервые введён в этой книге вместе с теорией таких преобразований. В 1732 году Эйлер вывел общее уравнение геодезических линий на поверхности.
В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны и что плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами.
В 1771 году Эйлер опубликовал сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности, то есть поверхности, которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей.
В связи с задачами картографии Эйлер глубоко исследовал конформные отображения, впервые применив для этого средства комплексного анализа.
2.6 Комбинаторика
Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений. При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.
Эйлер исследовал алгоритмы построения магических квадратов методом обхода шахматным конём. Две его работы (1776, 1779) заложили фундамент общей теории латинских и греко-латинских квадратов, огромная практическая ценность которой выяснилась после создания Рональдом Фишером методов планирования эксперимента, а также в теории кодов, исправляющих ошибки.
Рисунок 4 - Магический квадрат Эйлера
Занимаясь греко-латинскими квадратами, Эйлер без труда выяснил, что квадратов второго порядка не существует, затем он построил квадраты порядков 3, 4, и 5. Квадрата 6-го порядка ему обнаружить не удалось, и Эйлер высказал гипотезу, что квадратов с порядком такого вида не существует (например, порядка 6, 10, 14 и т. д.). В 1901 году гипотеза Эйлера была доказана французским математиком Гастоном Тарри, который перебрал все возможные варианты такого квадрата. Однако в 1959 году гипотеза была опровергнута двумя индийскими математиками -- Р. К. Бозе и С. С. Шриханде, обнаружившими при помощи ЭВМ квадрат порядка 22, и американским математиком Э. Т. Паркером, который нашёл квадрат 10-го порядка.
Рисунок 5 - греко-латинский квадрат 5-го порядка
Позднее были обнаружены квадраты 14, 18 и т. д. порядков. В совместной статье (апрель 1959 года) трое названных выше первооткрывателей показали, что существуют греко-латинские квадраты любого порядка, кроме 2-го и 6-го.
Сам Эйлер поставил задачу о нахождении квадрата 6 порядка так:
В 6 полках есть 36 офицеров 6 различных званий. Нужно так разместить их в каре, чтобы все офицеры в каждой колонне и шеренге были разных званий и из разных полков. Как уже было указано, такая задача неразрешима.
Другая задача звучит так: нужно разложить 16 карт (валеты, дамы, короли и тузы разных мастей) так, чтобы в каждом ряду и столбце было по одной карте каждой масти и значения. Эта задача была известна ещё до Эйлера. Её решением будет любой греко-латинский квадрат порядка 4. Для этой задачи также есть варианты, в которых дополнительно требуется, чтобы на главных диагоналях выполнялись те же требования. В другом варианте требуется, чтобы цвета мастей шли в шахматном порядке. Все эти задачи имеют решения.
2.7 Задача о семи мостах Кёнигсберга
Статья Эйлера 1736 года «Решение вопроса, связанного с геометрией положения» положила начало теории графов как математической дисциплине. Поводом для исследования послужила задача о семи мостах Кёнигсберга: можно ли пройти каждый мост по одному разу и вернуться в исходное место? Эйлер формализовал её, сведя к задаче о существовании в графе (вершины которого отвечают частям города, разделённым протоками реки Преголя, а рёбра -- мостам) циклического маршрута, проходящего по каждому ребру ровно один раз (в современной терминологии -- эйлерова цикла). Решая последнюю задачу, Эйлер показал: для наличия эйлерова цикла в графе нужно, чтобы у каждой вершины её степень (число выходящих из вершины рёбер) была чётной (а в задаче о кёнигсбергских мостах это не так: степени равны 3, 3, 3 и 5).
Эйлер внёс существенный вклад в теорию и методы приближённых вычислений. Впервые применил аналитические методы в картографии. Предложил удобный метод графического изображения соотношений и операций над множествами, получивший название «Круги Эйлера» (или Эйлера-Венна).
Рисунок 6 - задача об обходе семи сотов Кёнигсберга.
Заключение
Леонард Эйлер по складу своего ума представляет тип чистого математика. Лагранж говорит: «Если вы действительно любите математику, читайте Эйлера; изложение его сочинений отличается удивительною ясностью и точностью» [ 1. с 1]. Действительно, изящество вычислений доведено у него до высшей степени. Кондорсе заключил свою речь в академии в память Эйлера следующими словами: «Итак, Эйлер перестал жить и вычислять!»[ 1. с 2] Жить, чтобы вычислять - каким это кажется скучным со стороны! Математика принято представлять себе сухим и глухим ко всему житейскому, к тому, что занимает обыкновенных людей. Эйлер - исключительно математик. Развернуть перед читателем события жизни Эйлера - это значит познакомить его с развитием и всеми проявлениями благороднейшей человеческой страсти - страсти к науке. С одной стороны, мы увидим кипучую непрерывную деятельность ума, с другой стороны, - чистое, незлобивое и совершенно спокойное сердце. Из всех математиков восемнадцатого столетия Эйлер представляет для нас особенный интерес еще и потому, что большую часть своей жизни он провел в России и составлял славу нашей только что возникшей тогда Академии наук. Кондорсе говорит также, что “смерть Эйлера считалась великой общественной потерей даже в той стране, где он умер; Петербургская академия наук облачилась по нему в глубокий траур; мраморный бюст Эйлера всегда будет украшать собой тот зал, в котором происходят академические заседания.
Список использованной литературы
1. Елизавета Федоровна Литвинова «Леонард Эйлер. Его жизнь и научная деятельность». Биографическая библиотека Ф.Павленкова - 1-3
2. Юшкевич А.П., История математики с древнейших времен до начала XIX столетия/ А.П. Юшкевич.- М.: Наука, 1972. - 496
3. Юшкевич А. П., История математики от Декарта до середины XIX столетия/ А.П. Юшкевич.- М.: Государственное издательство физико-математической литературы, 1960. - 467
4. http://ru.wikipedia.org/wiki/ Формула_Эйлера.
5. Новая теория движения Луны. -- Л.: Изд. АН СССР, 1934. 6.
6. Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума или решение изопериметрической задачи, взятой в самом широком смысле. -- М.; Л.: Гостехиздат, 1934. -- 600 с.
7. Основы динамики точки. -- М.-Л.: ОНТИ, 1938.
8. Избранные картографические статьи. -- М.-Л.: Геодезиздат, 1959.
9. https://ru.wikipedia.org/wiki/
Размещено на Allbest.ru
...Подобные документы
Леонард Эйлер — швейцарский, немецкий и российский математик; биография, вклад в развитие механики, физики, астрономии; автор исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.
реферат [27,2 K], добавлен 22.12.2011А.Н. Колмогоров как выдающийся отечественный математик, профессор МГУ, академик АН СССР. Детство и юность математика, период обучения, первые научные труды. Вехи его профессиональной деятельности. Круг жизненных интересов, теоремы и аксиомы Колмогорова.
реферат [61,7 K], добавлен 13.11.2009Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.
реферат [22,8 K], добавлен 22.03.2016Изобретение Леонардом Эйлером геометрической схемы, с помощью которой можно изобразить отношения между подмножествами. Изучение частного случая кругов Эйлера — диаграммы Эйлера—Венна, изображающей все 2^n комбинаций n свойств (конечную булеву алгебру).
презентация [595,0 K], добавлен 16.02.2015Биография Л. Эйлера - выдающегося математика, внесшего значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Полжизни провёл он в России, где внёс существенный вклад в становление отечественной науки.
презентация [3,2 M], добавлен 07.06.2009Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.
курсовая работа [78,1 K], добавлен 12.06.2010Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.
курсовая работа [1,6 M], добавлен 01.02.2014Аналитическое и компьютерное исследования уравнения и модели Ван-дер-Поля. Сущность и особенности применения методов Эйлера и Рунге-Кутта 4 порядка. Сравнение точности метода Эйлера и Рунге-Кутта на одном графике, рисуя фазовые траектории из 1 точки.
курсовая работа [341,7 K], добавлен 06.10.2012Характеристики метода Эйлера. Параметры программы, предназначенной для решения систем линейных уравнений и ее логическая структура. Блок-схема программы и этапы ее работы. Проведение анализа результатов тестирования, исходя из графиков интераций.
курсовая работа [866,0 K], добавлен 27.03.2011Биографии и описание деятельности великих математиков: Паскаля, Бернулли, Дезарга, Ньютона, Ферма, Декарта, Эйлера, Монжа, Фурье, Лагранжа, Виета, Лейбница. Алгебраические методы в геометрии. Аналитическая геометрия Ферма. Аналитическая геометрия Декарта.
реферат [1,7 M], добавлен 14.01.2011Биография И.Р. Шафаревича. Основные вехи жизненного пути ученого. Методология И.Р. Шафаревича. Труды по алгебре, теории алгебраических чисел и алгебраической геометрии. Спорные моменты в его работах. Президент Московского математического общества.
курсовая работа [110,7 K], добавлен 11.02.2007Доказательство гипотезы Гольдбаха-Эйлера. Гипотезы о том, что любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел и любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел.
задача [28,3 K], добавлен 07.06.2009Изучение понятия и методов решения обыкновенных дифференциальных уравнений. Искомые функции непрерывного аргумента и замена их функциями дискретного аргумента. Разностное уравнение относительно сеточной функции - аппроксимация на сетке. Метод Эйлера.
презентация [107,6 K], добавлен 18.04.2013Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.
реферат [13,2 K], добавлен 01.12.2010Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.
курсовая работа [851,0 K], добавлен 03.07.2008Знакомство с Пьером де Ферма - французским математиком, одним из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Разработка способов систематического нахождения всех делителей числа. Великая теорема Ферма.
презентация [389,1 K], добавлен 16.12.2011Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").
презентация [435,9 K], добавлен 16.12.2011Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.
практическая работа [46,1 K], добавлен 06.06.2011Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.
контрольная работа [170,3 K], добавлен 01.04.2010Попытка доказательства частного случая великой теоремы Ферма. Преобразования уравнения xn+yn=zn, позволяющие получить квадратное уравнение. Показано, что вышеназванное равенство для трех действительных разных целых положительных чисел не выполняется.
монография [59,3 K], добавлен 27.12.2012