Применение операционного исчисления при решении дифференциальных уравнений
Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 27.02.2020 |
Размер файла | 451,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Применение операционного исчисления при решении дифференциальных уравнений
Введение
операционный исчисление функция изображение дифференцирование
Операционное исчисление в настоящее время стало одной из важнейших глав практического математического анализа. Операционный метод непосредственно используется при решении обыкновенных дифференциальных уравнений и систем таких уравнений; его можно использовать и при решении дифференциальных уравнений в частных производных.
Основателями символического (операционного) исчисления считают русских ученых М. Е. Ващенко - Захарченко и А. В. Летникова.
Операционное исчисление обратило на себя внимание после того, как английский инженер-электрик Хевисайд, используя символическое исчисление, получил ряд важных результатов. Но недоверие к символическому исчислению сохранялось до тех пор, пока Джорджи, Бромвич, Карсон, А. М. Эфрос, А. И. Лурье, В. А. Диткин и другие не установили связи операционного исчисления с интегральными преобразованиями.
Идея решения дифференциального уравнения операционным методом состоит в том, что от дифференциального уравнения относительно искомой функции-оригинала f(t) переходят к уравнению относительно другой функции F(p), называемой изображением f(t). Полученное (операционное) уравнение обычно уже алгебраическое (значит более простое по сравнению с исходным). Решая его относительно изображения F(p) и переходя затем к соответствующему оригиналу, находят искомое решение данного дифференциального уравнения.
Операционный метод решения дифференциальных уравнений можно сравнить с вычислением различных выражений при помощи логарифмов, когда, например, при умножении вычисления ведутся не над самими числами, а над их логарифмами, что приводит к замене умножения более простой операцией - сложением.
Так же как и при логарифмировании, при использовании операционного метода нужны:
1) таблица оригиналов и соответствующих им изображений;
2) знание правил выполнения операций над изображением, соответствующих действиям, производимым над оригиналом.
§1. Оригиналы и изображения функций по Лапласу
Определение 1. Будем действительную функцию действительного аргумента f(t) называть оригиналом, если она удовлетворяет трем требованиям:
1) f (t) є--0 , при t <--0
2) f(t) возрастает не быстрее некоторой показательной функции , при t >--0 , где M >--0, s0 і--0 -- некоторые действительные постоянные, s0 называют показателем роста функции f(t).
3) На любом конечном отрезке [a, b]--положительной полуоси Ot функция f(t) удовлетворяет условиям Дирихле, т.е.
a) ограничена,
b) либо непрерывна, либо имеет лишь конечное число точек разрыва I рода,
c) имеет конечное число экстремумов.
Функции, удовлетворяющие этим трем требованиям, называются в операционном исчислении изображаемыми по Лапласу или оригиналами.
Простейшим оригиналом является единичная функция Хевисайда
Если функция удовлетворяет условию 2 и не удовлетворяет 1, то произведение будет удовлетворять и условию 1, т.е. будет оригиналом. Для упрощения записи будем, как правило, множитель ? (t) опускать, считая, что все рассматриваемые функции равны нулю при отрицательных значениях t.
Интегралом Лапласа для оригинала f(t) называется несобственный интеграл вида
,
где - комплексный параметр.
Теорема.
Интеграл Лапласа абсолютно сходится в полуплоскости (то есть изображение F(p) заведомо определено при ), где s0 - показатель роста f (t).
? При получаем:
но по свойству модулей
.
Заметим, что по определению оригинала
.
Вычислим этот интеграл:
То есть получаем что F(p) существует при
^
Замечание. Из доказательства теоремы следует оценка:
при
Определение 2. Изображением по Лапласу функции f (t) называется функция комплексного переменного p = s + iу, определяемая соотношением
(1)
Тот факт, что функция F(t) является изображением оригинала f (t), символически это записывается так:
или (2)
§2. Основные теоремы операционного исчисления
2.1 Свертка оригиналов
Сверткой оригиналов и называется функция
.
Функции f (t) и g(t) называются компонентами свертки.
Найдем для примера свертку произвольного оригинала и единичной функции Имеем .
Так как при то
.(2.1.1)
Теорема 1. Если и, то
.
?
Действительно, по определению интеграла Лапласа имеем
Воспользуемся определением свертки:
Изменив порядок интегрирования в двойном интеграле, получим
.
Введем вместо t новую переменную . Тогда
что и требовалось доказать. ^
Свойство линейности.
Для любых комплексных постоянных ??и ?:
?
Это свойство вытекает из свойства линейности интеграла.
Домножим равенство на б:
Так как , то , то есть
2.2 Теорема подобия
Для любого постоянного a?> 0:
Умножение аргумента оригинала на положительное число ? приводит к делению изображения и его аргумента на это число ?.
Положим бt=u. Тогда .
Таким образом, при t=0 получаем u=0, при получаем и
2.3 Теорема запаздывания
для t>ф>0
Таким образом, запаздывание аргумента оригинала на положительную величину ??приводит к умножению изображения оригинала без запаздывания F(p) на e?pt.
2.4 Теорема смещения
Для a >0 имеет место соотношение:
?
Из определения изображения имеем:
2.5 Теорема упреждения
При а > 0 имеет место соотношение:
2.6 Умножение оригиналов
2.7 Дифференцирование оригинала
Если и - оригиналы и , то
(2.7.1)
В самом деле, исходя из формулы Ньютона - Лейбница, в силу (2.1.1) будем иметь
.
Тогда по теореме 1
.
Отсюда , что и требовалось доказать.
Применив формулу (2.7.1) дважды, получим
и т.д. В частности, если , то , т.е. в этом случае дифференцирование оригинала сводится к умножению его изображения на p.
2.8 Дифференцирование изображения
Если , то , то есть умножению оригинала на (-t) соответствует производная от изображения F(p).
Обобщение:
Путем последовательного дифференцирования по параметру p равенства получим:
2.9 Интегрирование оригинала
Если , то , то есть интегрированию оригинала в пределах от 0 до t соответствует деление изображения на р.
Если f(t) принадлежит множеству оригиналов, то и будет принадлежать множеству оригиналов.
Пусть и . Из видно, что
1)
2) .
Применим свойство дифференцирования оригинала к , и в силу последних двух равенств получим
,
А отсюда .
Но, по условию теоремы, . Следовательно, или .
А отсюда и из соотношений и следует, что .
2.10 Интегрирование изображения
Если и принадлежит множеству оригиналов, то .
§3. Изображения простейших функций
Единичная функция Хевисайда.
Имеем:
Так как при , то .
Для функции Хевисайда с запаздывающим аргументом по теореме запаздывания получим
.
Экспонента. По теореме смещения
.
Гиперболические и тригонометрические функции.
В силу линейности преобразования Лапласа имеем
;
;
;
Степенная функция с натуральным показателем.
Положим , где . Тогда при
.
При , поэтому
Отсюда
.
Так как , то
Полученные с помощью формулы (1) изображения некоторых функций сведены в таблицу (см. приложение). Ее можно использовать для нахождения изображений функций.
§4. Отыскание оригинала по изображению
Для нахождения оригинала f(t) по известному изображению F(p) нужно использовать формулы обращения Римана-Меллина
.
Если функция f(t) является оригиналом, т.е. удовлетворяет условиям 1-3 определения 1 и F(p) служит ее изображением, то в любой точке своей непрерывности функция f(t) равна:
Формула обращения Римана-Меллина дает выражение оригинала f(t) через изображение F(p), причем б - произвольное число, удовлетворяющее неравенству б>s0.
Вычисление оригинала по формуле Римана-Меллина довольно трудоёмко, поэтому на практике при решении задач применяют другие методы, которые рассматриваются ниже.
4.1 Разложение на простейшие дроби
Если ?есть дробно-рациональная функция, причем степень числителя A(p) меньше степени знаменателя B(p), то эту дробь разлагают на сумму простых дробей и находят оригиналы для каждой простой дроби либо непосредственно по формуле (1), либо по таблице (см. приложение).
Пример 1. Найти оригинал по изображению.
Разложим функцию на сумму дробей:
Найдем методом неопределенных коэффициентов А, В, С:
Тогда
Воспользуемся приложением:
В итоге оригинал равен
4.2. Первая теорема разложения
Теорема. Если изображение искомой функции может быть разложено в степенной ряд по степеням , т.е.
(причем этот ряд сходится к F( p) при ), то оригинал имеет вид
(причем ряд сходится при всех значениях t ).
§5. Решение задачи Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами
Рассмотрим линейное дифференциальное уравнение
где ak -действительные числа.
Требуется найти решение данного дифференциального уравнения, удовлетворяющее начальным условиям
x(0)=x0, x`(0)=x`0, …, x(n-1)(0)=x0(n-1)
где x0, x`0, …, x0(n-1) - заданные числа.
Будем предполагать, что искомая функция x(t), все ее производные, а также функция f (t) являются оригиналами.
Пусть . По формулам дифференцирования оригиналов
Перейдем от данного дифференциального уравнения к уравнению в изображениях
Перепишем его так , где , а
Находим так называемое операторное решение уравнения
Найдя оригинал x(t) по его изображению X(p) , мы получим тем самым решение задачи Коши для исходного дифференциального уравнения.
7. Примеры
Пример 1.
Найти решение дифференциального уравнения xўў(t)-4xў(t)+5x(t)=0,
удовлетворяющее условиям x(0) =--0, xў(0) =--1.
Решение. Запишем уравнение в изображениях
Вынесем Х за скобки
Найдем оригинал используя выведенные ранее значения в таблице приложения:
искомое решение -
Пример 2.
Решить дифференциальное уравнение y`-2y=0, y(0)=1.
Решение
Пример 3.
Решить дифференциальное уравнение y`+y=et, y(0)=0.
Решение
Перейдем к уравнению
Пример 4.
Найти решение уравнения при начальных условиях y(0)=-1, y`(0)=0.
Решение
Пусть , тогда , .
Тогда
- изображающее уравнение. Отсюда
Оригинал для правого слагаемого известен , а оригинал для удобнее найти по теореме свертывания.
Известно, что , поэтому
Так как , то
Таким образом,
Пример 5
Найти общее решение уравнения .
Решение
Для получения общего решения начальные условия зададим так:
y(0)=C1, y`(0)=C2
Если , то ,
.
И изображение уравнения имеет вид
Отсюда
Согласно приложению
,
Собирая оригиналы всех слагаемых, представляющих Y(p), получаем искомое решение:
если .
Пример 6
Операционный метод может быть применён для решения нестационарных задач математической физики. Рассмотрим случай, когда некая функция u(x,t) зависит лишь от пространственной координаты x и времени t.
Для уравнения теплопроводности будем решать ??краевую задачу:
a2=const, u(x,0)=ц(x) - начальные условия и u(0,t)=ш1(t), u(l,t)=ш2(t), 0 ? x ? l - краевые условия.
Пусть все функции являются оригинальными. Обозначим
- изображение по Лапласу.
Тогда
Тогда краевые условия:
Уравнение в изображениях:
Библиографический список
операционный исчисление функция изображение дифференцирование
1. Старков В.Н. Операционное исчисление и его применения. Учебн. пособ.-СПб, 2000.
2. Белослюдова В.В., Дронсейка И.П. Специальные разделы математики.Часть 1. Элементы теории функций комплексной переменной. Операционное исчисление: Курс лекций для студентов второго курса специальностей 050702, 050716 / ВКГТУ. - Усть - Каменогорск, 2006.
3. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Часть 2. М., 2005
4. Ершова В.В. Импульсные функции. Функции комплексной переменной. Операционное исчисление. Под ред. В.И. Азаматовой. Минск, 1976
Приложение
Таблица оригиналов и их изображений.
Оригинал |
Изображение |
Оригинал |
Изображение |
|
1 |
||||
t |
||||
Размещено на Allbest.ru
...Подобные документы
Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.
дипломная работа [162,3 K], добавлен 27.05.2008Определение плоскости комплексного переменного, последовательностей комплексных чисел и пределов последовательностей. Дифференцирование функций, условия Коши, интеграл от функции. Числовые и степенные ряды, разложение функций, операционные исчисления.
курсовая работа [188,4 K], добавлен 17.11.2010Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.
курсовая работа [609,9 K], добавлен 09.12.2011Обзор таблицы производных элементарных функций. Понятие промежуточного аргумента. Правила дифференцирования сложных функций. Способ изображения траектории точки в виде изменения ее проекций по осям. Дифференцирование параметрически заданной функции.
контрольная работа [238,1 K], добавлен 11.08.2009Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа [1,3 M], добавлен 08.04.2015Понятие предикатов и кванторов, порядок составления логических формул. Запись предиката как множество высказываний, формулы их исчисления. Аксиоматическое и натуральное представление узкого исчисления предикатов, погружение аристотелевской силлогистики.
контрольная работа [35,0 K], добавлен 12.08.2010Решение системы линейных уравнений двумя способами: по формулам Крамера и методом Гаусса. Решение задачи на нахождение производных, пользуясь правилами и формулами дифференцирования. Исследование заданных функций методами дифференциального исчисления.
контрольная работа [161,0 K], добавлен 16.03.2010Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012Вычисление комплексных чисел, модуля и аргумента, извлечение кубических корней. Нахождение синусов и косинусов в алгебраическом виде. Решение системы уравнений с помощью формул Крамера, вспомогательных определителей и средствами матричного исчисления.
контрольная работа [444,2 K], добавлен 11.05.2013Методика и основные этапы нахождения производной функции. Исследование методами дифференциального исчисления и построение графика функции. Порядок определения экстремумов функции. Вычисление неопределенных и определенных интегралов заменой переменной.
контрольная работа [84,3 K], добавлен 01.05.2010Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.
курсовая работа [799,6 K], добавлен 20.01.2010Сведения о графическом методе как особой знаковой системе. Техника составления статистических графиков. Требования к построению графического изображения. Классификация графиков по форме графического изображения и способу построения и задачам изображения.
контрольная работа [2,7 M], добавлен 01.08.2010Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.
курс лекций [871,5 K], добавлен 11.02.2012Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.
контрольная работа [2,0 M], добавлен 13.06.2012Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа [810,5 K], добавлен 24.11.2013Понятия, связанные с рядами и дифференциальными уравнениями. Необходимый признак сходимости. Интегрирование дифференциальных уравнений с помощью рядов. Уравнение Эйри и Бесселя. Примеры интегрирования в Maple. Приближенные вычисления с помощью рядов.
курсовая работа [263,9 K], добавлен 11.12.2013Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа [477,4 K], добавлен 17.06.2015Синтез вариационного исчисления и метода функций Ляпунова в основе принципа динамического программирования. Метод знакопостоянных функций Ляпунова в решении задач о стабилизации и синтезе управления для нелинейной и автономной управляемых систем.
курсовая работа [1,2 M], добавлен 17.06.2011Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа и их доказательство. Локальные экстремумы функции, исследование ее на выпуклость и вогнутость, понятие точки перегиба. Асимптоты и общая схема построения графика функции.
реферат [430,7 K], добавлен 12.06.2010