Горизонты XXI века: математический анализ гипотезы сингулярности

"Сингулярность" глобальной истории. Преобразование А.Д. Панова. Временной ряд Курцвейла – Модиса: формальный анализ. Экспоненциальная и гиперболическая формулы глобального ускорения. Формулы ускорения глобального макроэволюционного развития в рядах.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 08.09.2020
Размер файла 3,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Статья по теме:

Горизонты XXI века: математический анализ гипотезы Сингулярности

Коротаев А. В.

Представление о том, что в ближайшее время нас ждет некая «сингулярность», стало в последнее время популярным, прежде всего благодаря деятельности технического директора Google в области машинного обучения Р. Курцвейла. Показано, что математический анализ приводимого им ряда событий, начинающегося с возникновения нашей Галактики и заканчивающегося расшифровкой кода ДНК, действительно практически идеально описывается (неизвестной самому Курцвейлу) крайне простой математической функцией с сингулярностью в районе 2029 года. Показано также, что составленный в начале 2000-х годов (совершенно независимо от Курцвейла) российским физиком А. Д. Пановым аналогичный временной ряд (начинающийся с возникновения жизни на Земле и заканчивающийся информационной революцией) также практически идеально описывается (не использованной Пановым) математической функцией (крайне сходной с вышеупомянутой) с сингулярностью в районе 2027 года. Отмечено, что эта функция также чрезвычайно сходна с уравнением, открытым в 1960 году Х. фон Ферстером, показавшим в знаменитой статье в журнале “Science”, что оно практически идеально описывает динамику численности населения Земли и характеризуется математической сингулярностью в районе 2027 года. Все это говорит о наличии достаточно строгих глобальных макроэволюционных закономерностей, которые могут удивительно точно описываться крайне простыми математическими функциями. Вместе с тем продемонстрировано, что в районе точки сингулярности нет оснований вслед за Курцвейлом ожидать невиданного (на много порядков) ускорения темпов технологического развития; имеются большие основания интерпретировать эту точку как индикатор зоны перегиба, после прохождения которой темпы глобальной эволюции в долгосрочной перспективе будут систематически замедляться.

Ключевые слова: макроэволюция, глобальная история, Сингулярность, Большая история, биологическая эволюция, социальная эволюция, технологический прогресс, гиперболическое ускорение.

Вопрос о «сингулярности» глобальной (или даже Большой) истории обсуждается в последнее время очень активно (см., например: Назаретян 2013; 2014; 2015а; 2015б; Eden et al. 2012; Shanahan 2015; Callaghan et al. 2017; Nazaretyan 2015; 2016; 2017; 2018). Этот вопрос стал особенно популярным благодаря усилиям Р. Курцвейла, технического директора в области машинного обучения и обработки естественного языка компании Google, в особенности благодаря его книге (Kurzweil 2005), но также и через создание им в 2009 году Университета Сингулярности, активную пиар-кампанию и т. п. В сфере Большой истории [1] внимание к проблеме Сингулярности было привлечено благодаря деятельности таких специалистов в этой области, как А. П. Назаретян (2005; 2009; 2013; 2014; 2015а; 2015б; Балашова и др. 2017; Nazaretyan 2005; 2015; 2016; 2017; 2018), А. Д. Панов (2004; 2005; 2006; 2008; Panov 2005; 2011; 2017) и Г. Д. Снукс (Snooks 2005). В перспективе Большой истории гипотеза Сингулярности может представлять определенный интерес, так как она вроде бы предлагает «научно обоснованную» датировку девятой пороговой вехи Большой истории (Big History Threshold 9) [2]. Попробуем прежде всего разобраться, могут ли математические расчеты даты Сингулярности действительно помочь выявить дату наступления очередной пороговой вехи Большой истории.

Временной ряда Курцвейла - Модиса и математическая сингулярность Р. Курцвейл одним из первых расположил главные макроэволюционные сдвиги значительной части Большой истории вдоль гиперболической кривой, которая может быть описана уравнением с математической сингулярностью. Например, он приводит следующую диаграмму (см. рис. 1) [3]:

Рис. 1 - Обратный отсчет времени до Сингулярности, согласно (Kurzweil 2005: 18)

Однако, как ни удивительно, Курцвейл, по-видимому, не заметил, что кривая на рисунке является гиперболической и описывается уравнением, имеющим самую настоящую математическую сингулярность (более того, значение этой сингулярности, 2029 год, не так далеко от того, что предсказывается самим Курцвейлом). Это объясняется прежде всего некоторыми математическими неточностями, характерными для технического директора Google (достаточно упомянуть, что он упорно называет глобальный паттерн ускорения эволюции экспоненциальным, не обращая внимания на то, что экспоненциальная функция не имеет сингулярности).

Не может не вызвать некоторое удивление и то обстоятельство, что cам Курцвейл знает о понятии математической сингулярности и более или менее точно описывает его. Действительно, на с. 22-23 своего бестселлера он дает довольно точное описание понятия «математическая сингулярность»: «Singularity - это английское слово, означающее уникальное в своем роде событие с крайне специфическими последствиями. Это слово используется математиками для обозначения значения, которое превосходит любое конечное ограничение, такое как взрывообразный рост величины, который возникает при делении константы на переменную, значение которой все больше приближается к нулю. Такая математическая функция никогда не достигает бесконечного значения, поскольку деление на ноль математически “не определено” (это невозможно вычислить). Но значение у превосходит любой возможный конечный предел (приближается к бесконечности), когда знаменатель х стремится к нулю» (Kurzweil 2005: 22-23). Более того, он сопровождает свое описание понятия «математическая сингулярность» вполне адекватным иллюстрирующим графиком (см. рис. 2) (Ibid.: 23). Однако, представив достаточно точное описание понятия «математическая сингулярность», Курцвейл, похоже, теряет интерес к нему, внезапно переключаясь на использование термина «сингулярность» астрофизиками.

Еще один из загадочных аспектов книги Курцвейла заключается в том, что он, похоже, не заметил, что форма гиперболической кривой на его графике «Математическая сингулярность» (см. рис. 2) принципиально идентична (хотя, конечно, повернута на 180 градусов) форме кривой на его графике «Обратный отсчет времени до Сингулярности» (см. рис. 1). Более того, как мы увидим ниже, математическая модель, обеспечивающая наилучшую аппроксимацию кривой типа той, что изображена на рис. 1, в основном идентична гиперболической функции, показанной на рис. 2, т. е. y = k / x. Таким образом, если бы Курцвейл сделал простой математический анализ временного ряда на рис. 1, он бы нашел, что его лучше всего описывает математическое уравнение того самого типа, что он изображает на рис. 2 (с той очень небольшой разницей, что у нас в числителе уравнения оказалось бы 2, а не 1). Более того, он обнаружил бы, что значение математической сингулярности уравнения, лучше всего описывающего кривую на графике «Обратный отсчет времени до Сингулярности» Курцвейла (см. рис. 1), соответствует 2029 году, что не так сильно отличается от 2045 года, предложенного в его книге, и просто идентично дате, предложенной Курцвейлом совсем недавно (см.: Ranj 2016) [4].

Рис. 2 - Пример математической сингулярности (в натуральном масштабе) (Kurzweil 2005: 23)

Преобразование Панова

То, что не было сделано Р. Курцвейлом в 2005 году, было сделано еще в 2003 году А. Д. Пановым [5]. Он проанализировал достаточно похожий временной ряд (построенный, впрочем, на совершенно других источниках) и пришел к очень похожим выводам, но в гораздо более продвинутой форме. Очень важно, что Панов совершил шаг (к которому Курцвейл был очень близок), позволивший ему сделать анализ рассматриваемого временного ряда гораздо более прозрачным, благодаря чему он смог точно рассчитать дату сингулярности.

В книге 2005 года Курцвейл отложил по оси ординат своих диаграмм «время до следующего события», что, на мой взгляд, существенно затруднило их интерпретацию. Вместе с тем в эссе 2001 года при анализе диаграммы с аналогичным временным рядом (источник которого, кстати, не был указан) Курцвейл начал говорить об ускорении «скорости сдвига парадигм» (paradigm shift rate) (Kurzweil 2001: 5), но (что довольно типично для главного инженера Google) почти сразу же переключился на другую тему. Чтобы его диаграммы стали гораздо более понятными, стоило отложить по оси ординат не «время до следующего события», а именно «скорость сдвига парадигм», как это сделал Панов. Действительно, чтобы преобразовать время до следующего «парадигмального сдвига» в скорость сдвига парадигм, нужно было предпринять довольно простое действие: взять один год и разделить его на время до следующего сдвига парадигм; в результате мы получим число парадигмальных сдвигов в год, т. е. именно «скорость сдвига парадигм». Как мы уже говорили, это не было сделано Курцвейлом, но было сделано Пановым, получившим в результате следующие графики (см. рис. 3):

Рис. 3 - Динамика скорости глобального макроэволюционного развития, согласно Панову (Назаретян 2015а: 760)

Математическая интерпретация графика Панова намного проще и нагляднее. Заметим, что сам Панов обозначал переменную, нанесенную по оси ординат его графиков, как «частоту фазовых переходов в год». Однако совершенно очевидно, что «фазовый переход» Панова является синонимом «сдвига парадигм» Курцвейла, тогда как «частота фазовых переходов в год» описывает именно «скорость парадигмальных сдвигов» или темпы глобального макроэволюционного развития / темпы роста глобальной сложности. Это преобразование значительно упрощает точное определение картины ускорения темпов глобального макроэволюционного развития.

Временной ряд Курцвейла - Модиса: формальный анализ

Ниже проведен математический анализ временного ряда Курцвейла - Модиса по линии, предложенной Пановым (хотя и с некоторыми нашими модификациями). В дополнение к графику, приведенному нами на рис. 1, Курцвейл публикует две другие версии этого графика в двойной логарифмической шкале (см. рис. 4 и 5):

Рис. 4 - Первая версия графика Курцвейла «Обратный отсчет времени до Сингулярности» в двойной логарифмической шкале (Kurzweil 2005: 17)

Рис. 5 - Вторая версия графика Курцвейла «Обратный отсчет времени до Сингулярности» («Канонические вехи», Canonical Milestones) в двойной логарифмической шкале (Kurzweil 2005: 20)

Хотя временной ряд на рис. 4 представляется мне несколько более обоснованным, чем тот, который видим на рис. 5, я решил проанализировать временной ряд на рис. 5 по следующей причине. Дело в том, что источник данных для рис. 4 остается для меня совершенно неясным; следовательно, я не вижу способа восстановить соответствующий временной ряд до тех деталей, которые необходимы для его формального математического анализа. Но таких проблем нет с источником данных для рис. 5, поскольку Курцвейл указывает его совершенно четко. Это статья Т. Модиса (Modis 2003), подготовленная, в свою очередь, на основе его предыдущей статьи (Idem 2002). К счастью, Модис публикует все необходимые данные по своему временному ряду, что дает возможность его математически анализировать.

Мы начнем наш анализ с вышеупомянутого преобразования, т. е. заменим «время до следующего события» на «интенсивность парадигмальных сдвигов» ~ «частоту фазовых переходов» ~ «скорость глобального макроэволюционного развития» ~ «скорость роста глобальной сложности». Результат выглядит следующим образом (см. рис. 6):

Рис. 6 - График Курцвейла «Канонические вехи», трансформированный с использованием преобразования Панова (с логарифмической шкалой по оси ординат)

С использованием же той техники, которая была применена Курцвейлом при построении графика «Обратный отсчет времени до Сингулярности» (см. рис. 1), мы получим для анализируемого нами временного ряда следующий график (см. рис. 7):

Рис. 7 - График Курцвейла «Канонические вехи» с логарифмической шкалой по оси ординат

На рис. 8 видно, что один график является зеркальным отражением другого:

а)

Рис. 8 - График по Панову (a) является зеркальным отражением курцвейловского (б)

Хорошо видно, что кривая на рис. 7 (= рис. 8а) практически идентична гиперболической кривой на рис. 2, иллюстрирующей математическую функцию с сингулярностью. На следующем шаге отложим по оси абсцисс время до Сингулярности, а по оси ординат - скорость глобальной макроэволюции (число фазовых переходов в единицу времени) и вычислим дату сингулярности, получив (методом наименьших квадратов) такую гиперболическую кривую, которая наиболее точно описывает анализируемый нами временной ряд. Результаты этого анализа представлены на рис. 9 (как уже упоминалось выше, наш математический анализ определил дату сингулярности для этого временного ряда как 2029 год н. э.).

Рис. 9 - Диаграмма рассеивания (с логарифмической шкалой по оси ординат) для точек фазовых переходов из списка Модиса - Курцвейла с добавленной линией степенной регрессии с датой Сингулярности, идентифицированной методом наименьших квадратов в районе 2029 года н.э.

На рис. 10 тот же самый график представлен в двойной логарифмической шкале:

Рис. 10 - Диаграмма рассеивания (в двойной логарифмической шкале) для точек фазовых переходов из списка Модиса - Курцвейла с наложенной линией степенной регрессии с датой Сингулярности, идентифицированной методом наименьших квадратов в районе 2029 года н.э.

Теперь проанализируем полученные нами результаты. Как видим, временной ряд Модиса - Курцвейла с чрезвычайно высокой точностью описывается с помощью математической функции типа y = k / x, имеющей откровенно выраженную математическую сингулярность, которую Курцвейл вполне точно охарактеризовал на с. 22-23 своей книги, не обратив внимания на ее релевантность для математического описания временного ряда «Обратный отсчет времени до сингулярности», представленного им всего за несколько страниц до этого (с. 17-20). Действительно, наша степенная регрессия для рассматриваемого нами курцвейловского временного ряда «Обратный отсчет времени до сингулярности» определила следующее наилучшим образом подходящее уравнение, описывающее этот временной ряд с почти идеальной точностью (R2 = 0,999(!)):

(1)

(1)

где y - скорость роста глобальной сложности (число фазовых переходов за единицу времени), x - время до Сингулярности, а 2,054 и 1,003 - константы.

Отметим, что показатель степени знаменателя (1,003) лишь в пренебрежимо малой степени отличается от «1» (полностью в пределах погрешности); таким образом, имеются все основания использовать это уравнение в следующей упрощенной форме:

,

(2)

где y - скорость роста глобальной сложности (число фазовых переходов за единицу времени), x - время до Сингулярности, а 2,054 - константа. Таким образом, временной ряд Модиса - Курцвейла может быть с удивительно высокой точностью математически описан при помощи той самой простой гиперболической функции, которую Курцвейл представляет на с. 22-23 своей книги - с той лишь разницей, что в знаменателе правой части этого уравнения находится 2 (а не 1).

Экспоненциальная и гиперболическая формулы глобального ускорения

Особо стоит подчеркнуть, что проведенный нами анализ достаточно строго демонстрирует: паттерн ускорения роста глобальной сложности, прослеживаемый во временном ряду Модиса - Курцвейла, является НЕ экспоненциальным (как это утверждает Курцвейл), а гиперэкспоненциальным, или, если быть более точными, гиперболическим (см. рис. 11).

Рис. 11 - Диаграмма рассеивания для точек фазовых переходов из списка Модиса - Курцвейла с наложенными линиями степенной/ гиперболической и экспоненциальной регрессии: a) с логарифмической шкалой по оси ординат; б) в двойной логарифмической шкале. Сплошные регрессионные линии были сгенерированы экспоненциальной моделью, продемонстрировавшей (методом наименьших квадратов) наилучшее соответствие эмпирическим оценкам, пунктирные линии - гиперболическим уравнением

Стоит вспомнить, что при использовании логарифмической шкалы по оси ординат экспоненциальная кривая выглядит как прямая линия (в то время как гиперболическая линия кажется похожей на экспоненциальную кривую). Вместе с тем в двойной логарифмической шкале гиперболическая кривая выглядит как прямая линия, в то время как экспоненциальная кривая оказывается похожей на перевернутую экспоненциальную линию. Таким образом, как показывает рис. 11, Р. Курцвейл не вполне прав, утверждая, что глобальное макроэволюционное развитие ускорялось экспоненциально, демонстрируя, что это ускорение было отнюдь не экспоненциальным, а гиперболическим.

Формула ускорения глобального макроэволюционного развития по временному ряду Модиса - Курцвейла

Чтобы сделать рассматриваемую модель ускорения более понятной, произведем небольшое преобразование уравнения (2). Напомним, что это уравнение представляет собой немного упрощенную версию уравнения (1), использованного для генерирования гиперболических кривых на рис. 11.

Конечно, x (время до Сингулярности) на момент времени t равняется t* - t, где t* - это дата Сингулярности. Следовательно,

х = t* - t.

С учетом данного обстоятельства уравнение (2) может быть переписано следующим образом:

где y - это скорость глобального макроэволюционного развития / темпы роста глобальной сложности на момент времени t, t* - это дата Сингулярности, а 2,054 - константа.

Наконец, вспомним, что регрессионный анализ трансформированного временного ряда Модиса - Курцвейла с использованием метода наименьших квадратов позволил нам идентифицировать дату сингулярности как 2029 год н. э. С учетом этого обстоятельства уравнение (3) может быть записано следующим образом:

При этом в общем виде данная модель выглядит так:

где C и t* - константы.

Несмотря на небольшое упрощение (в виде округления показателя степени в знаменателе до 1), уравнение (4) генерирует такие кривые, которые демонстрируют чрезвычайно высокое (R2 = = 0,999(!)) соответствие эмпирическим оценкам паттерна гиперболического ускорения роста глобальной сложности.

Кривая, сгенерированная этим чрезвычайно простым уравнением, неожиданно точно описывает паттерн гиперболического ускорения темпов планетарного макроэволюционного развития на протяжении миллиардов лет (см. рис. 12).

Рис. 12 - Корреляция между эмпирическими оценками темпов роста глобальной сложности и теоретической кривой, сгенерированной гиперболическим уравнением yt = 2,054 / (2029 - t), 10 млрд. лет до н. э. - 2000 год н. э., с логарифмической шкалой по оси ординат

Как видим, простое гиперболическое уравнение yt = 2,054 / / (2029 - t) описывает наблюдавшееся до самого последнего времени ускорение темпов глобального макроэволюционного развития удивительно точным образом для всех основных эр глобальной истории.

Собственно говоря, модель (4) имеет достаточно простой «физический смысл». Действительно, подсчитаем скорость глобального макроэволюционного развития примерно за 200 лет до Сингулярности (т. е. около 1829 года), пользуясь еще более упрощенным видом уравнения (4) (yt = 2 / (2029 - t)): y1829 = 2 / (2029 - 1829) = 2 / 200 = 1 / 100. Таким образом, мы получаем следующий результат: около 1800 года характерная скорость глобального макроэволюционного развития составляла порядка одного фазового перехода (типа промышленной революции) за 100 лет - т. е. глобальное развитие шло в масштабе веков.

Тот же самый подсчет для временной точки примерно за 2000 лет до Сингулярности (? до настоящего времени) - около 1 года н. э. - в районе 29 года даст следующий результат: y29 = 2 / (2029 - 29) = 2 / 2000 = 1 / 1000 - таким образом, в эту эпоху макроэволюционные фазовые переходы (типа фазового перехода Осевого времени) имели тенденцию происходить в масштабе один переход за тысячелетие, т. е. в масштабе тысячелетий. Таким образом, в районе 18 тыс. до н. э. мы обнаружим, что планетарное макроэволюционное развитие шло в масштабе десятков тысяч лет, около 200 тыс. лет назад до настоящего времени - в масштабе сотен тысяч лет (около одного фазового перехода за сто тысяч лет), около 2 млн. лет назад - в масштабе миллионов лет, около 20 млн. лет назад - в масштабе десятков миллионов лет, около 200 млн. лет назад - в масштабе сотен миллионов лет, а около 2 млрд. лет назад - в масштабе миллиардов лет (т. е. около одного планетарного макроэволюционного фазового перехода за миллиард лет). Другими словами, с каждым уменьшением времени до настоящего момента (? до Сингулярности) на порядок (с 2 млрд. лет назад до 200 млн. лет назад, с 200 млн. лет назад до 20 млн. лет назад, с 20 млн. лет назад до 2 млн. лет назад и т. д.) темпы глобального макроэволюционного развития (~ темпы роста глобальной сложности) всякий раз увеличивались именно на порядок. И лично мне такой паттерн ускорения представляется очень похожим на реально наблюдавшийся.

Здесь также стоит вспомнить, что алгебраическое уравнение типа (5) может рассматриваться как решение следующего дифференциального уравнения:

(6)

(см., например: Korotayev, Malkov, Khaltourina 2006a: 118-120).

Следовательно, формула ускорения, подразумеваемая уравнением (4), может быть выражена следующим образом:

(7)

Вербально общая формула ускорения планетарной макроэволюции, которая столь точно описывает ряд «скачков (в уровне) сложности» [6] Модиса - Курцвейла при помощи уравнений (4)/(5), может быть сформулирована следующим образом: увеличение темпов макроэволюционного развития в a раз сопровождается увеличением скорости роста (т. е. ускорения) темпов макроэволюционного развития в a2 раз; так, двукратное увеличение темпов макроэволюционного развития в тенденции сопровождается четырехкратным увеличением скорости роста (т. е. ускорения) темпов макроэволюционного развития; десятикратное увеличение темпов макроэволюционного развития в тенденции сопровождается стократным ускорением роста темпов макроэволюционного развития; и т. д.

Теперь используем ту же самую методику для формального анализа временного ряда глобальных макроэволюционных фазовых переходов / «биосферных революций», идентифицированного Пановым (2004; 2005; 2006; 2008; Panov 2005; 2011; 2017). Однако прежде чем мы проведем этот анализ, представляется целесообразным разобрать несколько существенных моментов.

Временные ряды Модиса - Курцвейла и Панова: внешний сравнительный анализ Т. Модис и А. Д. Панов провели идентификацию своих временных рядов полностью независимо друг от друга. Как свидетельствует мое личное общение с обоими авторами, ни один из них даже не догадывался, что практически в то же самое время [7] на другом конце Европы другой человек занимался идентификацией очень похожего временного ряда (Панов работал и работает в Москве, а Модис - в Женеве). Как мы увидим ниже, они опирались на совершенно различные источники, и неудивительно, что полученные ими временные ряды оказались совсем не идентичными.

Действительно, временной ряд Модиса (Modis 2003), который стоит за курцвейловским графиком «Канонические вехи» (Kurzweil 2005: 20), выглядит следующим образом (мы воспроизводим его ниже в том виде, как он был опубликован в [Modis 2003]), так как именно на эту версию ряда опирался Курцвейл при создании своего графика и именно эта версия ряда была выше проанализирована математически; мы, однако, время от времени уточняем некоторые детали по более академическому описанию данного ряда из [Idem 2002]):

1. Возникновение Млечного Пути, первые звезды - 10 млрд. лет назад [8].

2. Возникновение жизни на Земле, формирование Солнечной системы и Земли, древнейшие скалы - 4 млрд. лет назад.

3. Появление эукариот, «изобретение» полового размножения (микроорганизмами), атмосферный кислород, древнейшие фотосинтезирующие растения, возникновение тектоники плит - 2 млрд. лет назад.

4. Первые многоклеточные, губки, водоросли, протисты - 1 млрд. лет назад.

5. Кембрийский взрыв / беспозвоночные / позвоночные, pастения колонизируют сушу, первые деревья, рептилии, насекомые, амфибии - 430 млн. лет назад.

6. Первые млекопитающие, первые птицы, первые динозавры - 210 млн. лет назад.

7. Первые покрытосеменные, древнейшие остатки цветковых растений - 139 млн. лет назад.

8. Первые приматы / столкновение с астероидом / массовое вымирание (включая динозавров) - 54,6 млн. лет назад.

9. Первые человекообразные обезьяны, первые гоминиды - 28,5 млн. лет назад.

10. Первый орангутан, проконсул - 16,5 млн. лет назад.

11. Расхождение предков шимпанзе и человека, самые ранние свидетельства прямохождения у гоминид - 5,1 млн. лет назад.

12. Первые каменные орудия, Homo erectus - 2,2 млн. лет назад.

13. Возникновение Homo sapiens - 555 тыс. лет назад.

14. Доместикация огня / Homo heidelbergensis - 325 тыс. лет назад.

15. Расхождение типов человеческой ДНК - 200 тыс. лет назад.

16. Люди современного вида / древнейшие погребения - 105 700 лет назад.

17. Наскальное искусство, протописьмо - 35 800 лет назад.

18. Технология добывания огня - 19 200 лет назад.

19. Появление земледелия - 11 тыс. лет назад.

20. Изобретение колеса / письмо / древние империи / большие цивилизации / Египет / Месопотамия - 4907 лет назад.

21. Демократия / города-государства / древние греки / Будда (? Осевое время) - 2437 лет назад.

22. Изобретение нуля и десятичного исчисления, падение Рима, исламские завоевания - 1440 лет назад.

23. Ренессанс (книгопечатание) / открытие Нового Света / научный метод - 539 лет назад.

24. Промышленная революция (паровой двигатель) / политические революции (Франция, США) - 225 лет назад.

25. Современная физика / радио / электричество / автомобиль / аэроплан - 100 лет назад.

26. Дешифровка структуры ДНК / изобретение транзистора / ядерная энергия / Вторая мировая война / холодная война / спут-ник - 50 лет назад.

27. Интернет / расшифровка генома человека - 5 лет назад.

Отметим, что сам Модис заявляет: «…настоящее время приравнивается здесь к 2000 г. н. э.» (Modis 2003: 31). Действительно, это, вне всякого сомнения, имеет смысл по отношению к вехам (24)-(27) из списка Модиса - Курцвейла. Вместе с тем имеются некоторые основания предполагать, что Модис начал составлять первые варианты своего списка за несколько лет до 2000 года и, по всей видимости, не привел в своей публикации 2003 года некоторые старые датировки вех в соответствие с новой условной датой «настоящего времени», установленной на точку 2000 года н. э. Иначе трудно понять датировки им вех (20), (21) и (23).

Т. Модис (Idem 2002: 393-401) дает список научных публикаций, на которые опирался при идентификации своего временного ряда. А. Д. Панов при идентификации своего временного ряда опирался на другие публикации [9] (см. табл. 1):

Таблица 1 - Сопоставление источников, использованных Т. Модисом (Modis 2002; 2003) и А. Д. Пановым (2005) для составления их списков фазовых переходов / «биосферных революций» / «канонических вех» / «эволюционных поворотных точек» / «скачков сложности»

Источники, использованные Модисом для идентификации списка фазовых переходов / «скачков сложности», опубликованного в (Modis 2002; 2003)

Источники, использованные Пановым для идентификации списка фазовых переходов / «биосферных революций», изданного в первой полностью академической публикации его результатов (Панов 2005)

1) Barrow, Silk 1980; 2) Burenhult 1993; 3) Heidmann 1989; 4) Johanson, Edgar 1996; 5) Sagan 1989;

6) Schopf 1991.

К этому списку Т. Модис добавляет:

7) Timeline of the Universe (Ame- rican Museum of Natural History, Central Park West at 79th Street, New York); 8) Encyclopedia Britannica;

9) The Web Site of the Educational Resources in Astronomy and Planetary Science (ERAPS), University of Arizona; 10) Private Communication, Paul D. Boyer, Biochemist. Nobel Prize 1997. Dec 27, 2000;

11) A Timeline for Major Events in the History of Life on Earth as Given by David R. Nelson, Department of Biochemistry at the University of Memphis, Tennessee (http://drnelson. utmem.edu/evolution2.html)

Работы российских ученых, опубликованные на русском языке:

1) Борисковский 1970; 2) Он же 1974a; 3) Он же 1974б; 4) Он же 1978; 5) Дьяконов 1994; 6) Федонкин 2003; 7) Галимов 2001; 8) Капица 1996; 9) Келлер 1975; 10) Лопатин 1983; 11) Муратов, Вахрамеев 1974; 12) Назаретян 2004; 13) Розанов 1986; 14) Он же 2003; 15) Розанов, Заварзин 1997; 16) Шанцер 1973; 17) Заварзин 2003; 18) Зайцев 2001.

Работы западных ученых, переведенные на русский язык:

1) Антисери, Реале 2001; 2) Биган 2004; 3) Кэрролл 1992; 4) Он же 1993a; 5) Он же 1993б; 6) Фоули 1990; 7) Ясперс 1991; 8) Кринг, Дурда 2004; 9) Вонг 2003.

Оригинальные публикации западных ученых на английском языке:

1) Alvarez et al. 1980; 2) Orgel 1998; 3) Wood 1992

Как видим, нет ни одной публикации, на которую опирались бы одновременно и Модис (Modis 2002; 2003), и Панов (2004; 2005), когда они составляли свои списки «канонических вех» / «биосферных революций». Списки использованных ими источников различаются на 100 %. Более того, исследователи в основном опирались на источники, принадлежащие к разным научным традициям. Действительно, Т. Модис опирался исключительно на работы западных ученых, опубликованные на английском языке. В разительном контрасте с этим из 30 источников, использованных А. Д. Пановым (2005), 18 представляют собой работы российских исследователей, опубликованные в России на русском языке, девять - это работы западных ученых, переведенные на русский язык и изданные в России, и лишь три - оригинальные работы западных исследователей на английском языке. В свете этого вряд ли у кого-то вызовет удивление то, что список фазовых переходов Панова (Там же: 124-127) оказался ни в коем случае не идентичным списку Модиса [10]:

«0. Возникновение жизни на Земле - около 4 Ч 109 лет назад (Orgel 1998; Розанов, Заварзин 1997; Розанов 2003; Федонкин 2003). Жизнь возникает в форме примитивных безъядерных одноклеточных организмов - прокариот (и, возможно, вирусов [Галимов 2001]). После возникновения жизни приблизительно в течение 2-2,5 млрд. лет эволюция протекала, по-видимому, без существенных потрясений, при этом главным системообразующим фактором биосферы была прокариотная фауна. Это видно, в частности, по монотонному росту скорости отложения горючих ископаемых (седиментогенез) вплоть до достижения максимума 2,0-1,5 млрд. лет назад (Лопатин 1983). Однако задолго до конца прокариотной эры возникли первые эукариоты и, возможно, даже примитивные многоклеточные организмы (Розанов 2003; Федонкин 2003). Специально отмечается (Федонкин 2003), что эукариоты не играли заметной роли в глобальных биохимических циклах вплоть до кислородного кризиса около 1,5 млрд. лет назад (см. ниже). Эукариотная фауна на фоне прокариотной существовала в форме избыточного внутреннего разнообразия.

1. Кислородный кризис или неопротерозойская революция - 1,5 Ч 109 лет назад (Федонкин 2003; Лопатин 1983; Розанов 2003; Заварзин 2003). Цианобактерии обогатили первоначально восстановительную атмосферу Земли кислородом, который был сильным ядом для анаэробных прокариот. Анаэробные организмы стали вымирать, что видно, в частности, по резкому замедлению седиментогенеза в этот период (Лопатин 1983; Розанов, Заварзин 1997). Кислородный кризис - типичный пример эндо-экзогенного кризиса и первый глобальный экологический кризис в истории Земли. На смену анаэробным прокариотам пришли аэробные формы жизни, которые представлены в основном как одноклеточными, так и многоклеточными эукариотами. По разным данным, это событие имело место от 2,0 до 1,0 млрд. лет назад, но при этом фактически подразумеваются разные фазы этого перехода. От пика революции нас отделяет приблизительно 1,5 млрд. лет.

2. Кембрийский взрыв - 590-510 Ч 106 лет назад (Келлер 1975; Розанов 1986; Кэрролл 1992). В течение нескольких десятков миллионов лет возникают практически все современные филогенетические стволы многоклеточных, включая позвоночных (Кэрролл 1992: 37). Кембрийский взрыв совпадает с началом палеозойской эры. В течение палеозоя жизнь постепенно выходила на сушу и осваивала ее. Уже в кембрии обнаружены первые попытки выхода беспозвоночных на сушу (Федонкин 2003). Палеозойская эра заканчивается господством на суше земноводных, чрезвычайно разнообразных и часто гигантских (Кэрролл 1992), среди растений - хвощей, плаунов и папоротников. За несколько десятков миллионов лет до окончания палеозоя возникают первые пресмыкающиеся (избыточное разнообразие), которые становятся системообразующим фактором следующей фазы развития планетарной системы.

3. Начало мезозойской эры, революция пресмыкающихся - 235 Ч 106 лет назад (Кэрролл 1992; Муратов, Вахрамеев 1974; Кэрролл 1993а). Внезапно и быстро вымирают практически все отряды палеозойских земноводных (Кэрролл 1992: 192), лидерство на суше переходит к пресмыкающимся - сначала звероподобным и зверозубым ящерам, потом к динозаврам (Он же 1993а). В мире растений начинают господствовать голосеменные (хвойные, гинкговые и др.). Уже в середине мезозоя появляются первые млекопитающие, но в экосистемах они играют подчиненную роль (избыточное разнообразие).

4. Начало кайнозойской эры, революция млекопитающих - 66 Ч 106 лет назад (Шанцер 1973; Кэрролл 1993а; 1993б). Полностью вымирают динозавры, на суше - гигантский всплеск разнообразия млекопитающих, в воздухе господствуют птицы, среди растений голосеменные вытесняются покрытосеменными (цветковыми). Предположение о том, что вымирание динозавров вызвано исключительно последствиями падения гигантского метеорита, образовавшего кратер Чикулуб (Alvarez et al. 1980; Кринг, Дурда 2004), вызывает серьезную критику, так как вымирание динозавров длилось 1-2 млн. лет, а пыль и сажа могли держаться в атмосфере максимум несколько месяцев (Кэрролл 1993а), при этом длительных глобальных климатических изменений не отмечается.

5. Начало неогена - 25-20 Ч 106 лет назад (Шанцер 1973; Кэрролл 1993б; Биган 2004) - сопровождается резким обновлением фауны на территории Европы; флора и фауна приобретают практически современный вид. Возникают гоминоиды - человекообразные обезьяны, причем это событие имеет характер сильнейшего эволюционного взрыва. Между 22 и 17 млн. лет назад Африку населяли не менее 14 родов гоминоидов, что составляет десятки видов (Биган 2004) - много больше, чем сейчас.

6. Начало четвертичного периода (антропоген) - 4,4 Ч 106 лет назад (Биган 2004; Фоули 1990; Wood 1992). Первые примитивные люди (гоминиды) отделяются от обезьяноподобных (гоминоидов). Подобно началу неогена, начало антропогена сопровождалось всплеском разнообразия Homo (Wood 1992). Далее следует несколько событий, имеющих, возможно, не столько биологичес кий, сколько социальный характер (см. обсуждение в конце данного раздела). Периоды различаются по характеру обработки орудий труда людьми каменного века. Существующая традиция, отраженная и в энциклопедиях, выделяет последовательность эпох: олдувай - шелль - ашель - мустье.

7. Олдувай, палеолитическая революция - 2,0-1,6 Ч 106 лет назад (Борисковский 1974а). Появление первых очень грубо обработанных каменных орудий труда - так называемых чопперов. Галечные культуры, Homo habilis.

8. Шелль - 0,7-0,6 Ч 106 лет назад (Он же 1978). Овладение огнем, топоровидные орудия с поперечным лезвием (кливеры), грубые рубила. Основной носитель культуры - Homo erectus.

9. Ашель - 0,4 Ч 106 лет назад (Он же 1970) - характеризуется стандартизированными овальными, треугольными, круглыми и другими симметричными рубилами. Основной представитель по-прежнему Homo erectus. На фоне ашельской культуры появляется неандерталец (Homo sapiens neandertalensis) (Борисковский 1970) и около 160 тыс. лет назад - очень близкий вид Homo sapiens sapiens (Вонг 2003). Однако, по-видимому, ни тот ни другой не играют пока существенной роли в планетарной системе (избыточное разнообразие).

10. Мустье (культурная революция неандертальцев) - 150-100 тыс. лет назад (Назаретян 2004; Борисковский 1974б). Лидером планетарной системы становится неандерталец. Каменные и костяные орудия тонкой обработки - скребла, остроконечники, сверла, ножи. Жилища из костей мамонта и шкур. Захоронение мертвых (примитивные религии). Homo sapiens sapiens по-прежнему не имеет существенного значения в планетарной системе (Назаретян 2004).

11. Верхнепалеолитическая революция (культурная революция кроманьонцев) - 30 тыс. лет назад (Назаретян 2004; Дьяконов 1994). Вымирают неандертальцы, носителем культуры становится человек современного вида Homo sapiens sapiens. Многократно возросла продуктивность использования каменного сырья, заметно усовершенствовались знаковые системы коммуникации. Значительное развитие охотничьей автоматики (копья, ловушки), широкое распространение искусства (наскальные рисунки).

12. Неолитическая революция - 12-9 тыс. лет назад (Назаретян 2004; Дьяконов 1994). В конце верхнего палеолита развитие охотничьих технологий привело к истреблению популяций и целых видов животных, что подорвало пищевые ресурсы палеолитического общества и привело к ужесточению межплеменной конкуренции. Ответом на кризис был переход от присваивающего (охота, собирательство) к производящему (земледелие, скотоводство) хозяйству и смена нормативного геноцида зачаточными формами коллективной эксплуатации (Назаретян 2004). Уже в неолите появляются предки городов, такие как Чатал-Хююк (7-4-е тыс. до н. э.), Иерихон (7-е тыс. до н. э.) (Дьяконов 1994). Однако на этом этапе они еще не являются существенным системообразующим фактором (Там же).

13. Городская революция, начало Древнего мира - 4-3-е тыс. до н. э. (Назаретян 2004; Дьяконов 1994). Массовое распространение крупных человеческих агломераций, возникновение письменности, первых правовых документов, настоящей бюрократии и классового общества, появление ремесел. Революция последовала за распространением бронзовых орудий, демографическим взрывом и обострением конкуренции за плодородные земли.

14. Железный век, эпоха империй, революция Осевого времени - 800-500 лет до н. э. (Ясперс 1991; Назаретян 2004; Дьяконов 1994; Зайцев 2001). Возникновение технологии получения железа около 1000-900 лет до н. э. привело к тому, что оружие стало намного более дешевым, легким, эффективным, а войны - более кровопролитными. Ответом на этот кризис техно-гуманитарного баланса было, во-первых, объединение мелких государств в более крупные образования - империи, и, во-вторых, авторитарное мифологическое мышление стало вытесняться личностным. Личность начала восприниматься как суверенный носитель морального выбора. Это привело к практически одновременному появлению в разных местах Земли мыслителей и полководцев нового типа - таких как Заратустра, иудейские пророки, Сократ, Будда, Конфуций (Ясперс 1991) и др. - и к культурному взрыву Античности (Зайцев 2001).

15. Гибель Древнего мира, начало Средневековья - 400-630 годы (здесь и далее - новой эры) (Дьяконов 1994). Начало перехода я условно связываю с деятельностью Святого Августина и осуждением пелагианства на Карфагенском соборе в 417 году, что означало конец эллинистической философии (Антисери, Реале 2001), а конец перехода - с деятельностью пророка Мухаммеда (570-632). Основное содержание перехода - кризис и гибель Римской империи (Древнего мира) с последующим распространением феодальных государств и княжеств при ведущей роли мировых тоталитарных религий (но, конечно, не сводится только к этому).

16. Первая промышленная революция - 1450-1550 годы (Капица 1996; Назаретян 2004; Дьяконов 1994). В терминологии И. М. Дьяконова (1994) - начало стабильно-абсолютистского постсредневековья. Возникновение промышленного производства (мануфактуры), Великие географические открытия, возникновение книгопечатания и культурный переворот Нового времени.

17. Вторая промышленная революция - 1830-1840 годы (Капица 1996; Дьяконов 1994). Возникновение механизированного производства, эпоха пара и электричества. Начало глобализации в области информации - в 1831 году изобретен телеграф. В культурной области начинает формироваться устойчивое негативное отношение к войне как к средству решения политических вопросов (Л. Толстой и др.).

18. Информационная революция - 1950 год (Капица 1996; Назаретян 2004; Дьяконов 1994). Переход промышленно развитых стран в постиндустриальную эпоху, когда большая часть населения занята не в материальном производстве, а в сфере обслуживания и в переработке информации. Распространение компьютеров и автоматизированных баз данных. Войны между промышленно развитыми супердержавами вытесняются в виртуальную область, принимая форму холодной войны (изменение уровня техно-гуманитарного баланса).

19. Кризис и распад социалистического лагеря, информационная глобализация - 1991 год. Распад мировой системы тоталитарной плановой экономики, резкое снижение уровня глобального военного противостояния, становление мировой сети Интернет, означающее завершение информационной глобализации. Данные события пока отнюдь не всегда трактуются как революция, но, как будет видно, по некоторым чисто формальным признакам они имеют тот же статус, что и предыдущие» (Панов 2005: 124-127).

Отметим, что последняя точка данных (19) отсутствует на приводимых ниже графиках, но она была использована для оценки скорости глобального макроэволюционного развития для точки данных (18). В свете вышеописанного радикального различия в источниковых базах Модиса и Панова, а также полной независимости проводившихся ими исследований друг от друга вряд ли может вызвать удивление то, что пановский список «биосферных революций» очень значительно отличается от ряда «канонических вех» Модиса - Курцвейла:

1. Список Модиса - Курцвейла содержит 27 «канонических вех», в то время как пановский ряд включает лишь 20 «биосферных революций». Таким образом, как минимум 7 вех Модиса - Курцвейла не имеют никаких параллелей в ряду Панова.

2. Есть лишь одна веха, для которой и Модис, и Панов имеют полностью идентичные название и датировку (Модис - Курцвейл 2 = Панов 0). Имеется также одна веха (Модис - Курцвейл 26 = Панов 18), которую Модис и Панов датируют одинаково, но которой они дают различные названия.

3. Имеется несколько вех, которым Модис и Панов дают отдаленно сходные названия и примерно (но не в точности) сходные датировки (например, Модис - Курцвейл 23 ? Панов 16; Модис - Курцвейл 19 ? Панов 12; Модис - Курцвейл 17 ? Панов 11; Модис - Курцвейл 9 ? Панов 5). В одном случае Модис и Панов дают одной и той же вехе (Модис - Курцвейл 5 ~ Панов 2) одинаковое название, но очень разные даты.

4. С другой стороны, для очень значительных отрезков рассматриваемых рядов корреляция между ними выглядит крайне удаленной. Например, для периода между 400 млн. лет назад и 150 тыс. лет назад эта корреляция выглядит следующим образом (см. табл. 2). Как видим, для очень большой части планетарной истории (между Кембрийским взрывом и возникновением Homo sapiens sapiens) корреляция между двумя рядами выглядит реально слабой; вполне очевидно, что речь идет о совершенно независимо составленных (и достаточно отличных друг от друга) списках.

Таблица 2 - Корреляция между списками фазовых переходов Модиса и Панова для периода между 400 млн. лет назад и 150 тыс. лет назад

Ряд Модиса - Курцвейла

Ряд Панова (2005)

6. Первые млекопитающие, первые птицы, первые динозавры - 210 млн. лет назад.

7. Первые покрытосеменные, древнейшие остатки цветковых растений - 139 млн. лет назад.

8. Первые приматы / столкновение с астероидом / массовое вымирание (включая динозавров) - 54,6 млн. лет назад.

9. Первые человекообразные обезьяны, первые гоминиды - 28,5 млн. лет назад.

10. Первый орангутан, проконсул - 16,5 млн. лет назад.

11. Расхождение предков шимпанзе и человека, самые ранние свидетельства прямохождения у гоминид - 5,1 млн. лет назад.

12. Первые каменные орудия, Homo erectus - 2,2 млн. лет назад.

13. Возникновение Homo sapiens - 555 тыс. лет назад.

14. Освоение огня / Homo heidelbergensis - 325 тыс. лет назад.

15. Расхождение типов человеческой ДНК - 200 тыс. лет назад

3. Начало мезозойской эры, революция пресмыкающихся - 235 млн. лет назад.

4. Начало кайнозойской эры, революция млекопитающих - 66 млн. лет назад.

5. Начало неогена - 25-20 млн. лет назад.

6. Начало четвертичного периода (антропоген) - 4,4 млн. лет назад.

7. Олдувай, палеолитическая революция - 2,0-1,6 млн. лет назад.

8. Шелль - 600-700 тыс. лет назад.

9. Ашель - 400 тыс. лет назад

Временной ряд Панова: формальный анализ

Теперь, после того как мы уже знаем все это, проанализируем ряд Панова тем же самым способом, как мы проанализировали выше ряд Модиса - Курцвейла. Результаты этого анализа выглядят следующим образом (см. рис. 13):

Рис. 13 - Диаграмма рассеивания точек фазовых переходов Панова с наложенной линией степенной регрессии (с логарифмической шкалой по оси ординат) - для определенной методом наименьших квадратов даты Сингулярности = 2027 год н. э.

В двойной логарифмической шкале соответствие между степенной моделью y = 1,886 / x1,01 (где x обозначается число лет до точки Сингулярности, определенной методом наименьших квадратов как 2027 год н. э.) и эмпирическими оценками Панова выглядит следующим образом (см. рис. 14):

Рис. 14 - Диаграмма рассеивания точек фазовых переходов Панова с наложенной линией степенной регрессии (в двойной логарифмической шкале) - для определенной методом наименьших квадратов даты Сингулярности = 2027 год н. э.

Я, конечно, ожидал, что уравнение, лучше всего описывающее ряд Панова, будет выглядеть достаточно похожим на уравнение, которое мы выше получили для ряда Модиса - Курцвейла; но, честно скажу, я не ожидал, что оно окажется до такой степени похожим. Это особенно впечатляет, если принимать во внимание то обстоятельство, что ни Модис, ни Панов не предпринимали попыток аппроксимировать свои ряды при помощи уравнения (10), а потому их никак нельзя подозревать в попытках «подогнать» свои ряды под это уравнение. Действительно, в неупрощенном виде степенное уравнение, лучше всего описывающее прослеживаемый в ряду Модиса - Курцвейла паттерн ускорения планетарного макроэволюционного развития, выглядит следующим образом:

(8)

где, напомним, y - это скорость макроэволюционного развития (измеряемая как число фазовых переходов за единицу времени), а 2029 (год н. э.) - точка Сингулярности, определенная методом наименьших квадратов. В то же время степенное уравнение, лучше всего описывающее паттерн ускорения планетарного макроэволюционного развития, прослеживаемый в ряду Панова (2005), выглядит следующим образом:

Вот как выглядит соответствующее уравнение в общем виде:

Это уравнение имеет три параметра - C, t* и в. И, как мы видели, все три параметра оказались удивительно близкими, как для ряда Курцвейла - Модиса, так и для ряда Панова.

Формулы ускорения глобального макроэволюционного развития в рядах Модиса - Курцвейла и Панова: сравнительный анализ

Действительно, сравнение уравнений типа (10), наиболее точно математически описывающих два соответствующих ряда, дает следующие результаты (см. табл. 3):

сингулярность модис ряд преобразование

Собственно говоря, на меня наиболее сильное впечатление произвело даже не то обстоятельство, что значение параметра Сингулярности (t*) для обеих регрессий оказалось столь близким (разница всего в два года!), а то, что значение показателя степени в в обоих случаях оказалось столь близким к 1.

Особого упоминания заслуживает исключительно высокая корреляция между теоретическими кривыми, генерируемыми чрезвычайно простыми уравнениями типа (5), и эмпирическими оценками как Модиса - Курцвейла, так и Панова. Применительно к ряду Модиса - Курцвейла уравнение (5) описывает 99,89 % всей вариации скорости глобальной эволюции на протяжении нескольких миллиардов лет, в то время как для ряда Панова это соответствие составляет 99,91 % - вместе с тем предельная близость значений R2 для обеих регрессий (разница между ними составляет всего лишь 0,02 %!) впечатляет и сама по себе [11].

И, конечно же, не вызывает никакого удивления то, что дифференциальное уравнение, описывающее ускорение темпов роста глобальной сложности в ряду Панова, оказывается крайне сходным с формулой ускорения темпов глобального макроэволюционного развития для ряда Модиса - Курцвейла. Действительно, как мы уже упоминали, имеются достаточные основания упростить уравнение (9) до простого гиперболического варианта (11):

Напомним, такое алгебраическое уравнение может рассматриваться как решение следующего дифференциального уравнения, которое оказывается крайне сходным с тем, что мы выше получили для ряда Модиса - Курцвейла:

Таким образом, общая формула ускорения темпов глобального макроэволюционного развития, столь точно описывающая пановскую серию «биосферных революций», оказывается практически идентичной той, что была нами обнаружена для ряда Модиса - Курцвейла: увеличение темпов макроэволюционного развития в a раз сопровождается увеличением скорости роста (т. е. ускорения) темпов макроэволюционного развития в a2 раз; так, двукратное увеличение темпов макроэволюции в тенденции сопровождается четырехкратным увеличением скорости роста (т. е. ускорения) темпов макроэволюции; десятикратное увеличение темпов макроэволюционного развития в тенденции сопровождается стократным ускорением роста темпов макроэволюционного развития и т. д. На мой взгляд, все это говорит о наличии достаточно строгих глобальных макроэволюционных закономерностей (описывающих рост сложности на нашей планете на протяжении нескольких миллиардов лет), которые могут удивительно точно описываться крайне простыми математическими функциями.

Удивительное открытие Хайнца фон Ферстера

Здесь уместно вспомнить о том, что в 1960 году Х. фон Ферстер, П. Мора и Л. Амиот опубликовали в журнале Science сообщение об удивительном открытии (von Foerster et al. 1960). Они показали, что между 1 и 1958 годами н. э. динамика численности народонаселения мира (N) может быть с необычайно высокой точностью описана при помощи следующего поразительно простого уравнения:

где Nt - это население мира в момент времени t, a C и t* - константы, при этом t* соответствует так называемой демографической сингулярности. Параметр t* был оценен фон Ферстером и его коллегами как 2026,87, что соответствует 13 ноября 2026 года; это, кстати, предоставило им возможность дать своей статье предельно броское название «Конец света: пятница, 13 ноября 2026 года от Рождества Христова» (Ibid.); однако позже было показано, что эта тенденция просматривалась какое-то время и после 1958 года (см., например: Капица 1999; Коротаев и др. 2010), а с другой стороны, эта же тенденция прослеживается и в течение многих тысячелетий до н. э. (Капица 1996; 1999; Подлазов 2000; 2001; 2002; Коротаев 2006; 2010а; Коротаев, Малков, Халтурина 2005а; 2007; Kapitza 1996; 2003; Kremer 1993; Tsirel 2004; Korotayev, Malkov, Khaltourina 2006a; 2006b). Более того, М. Кремер (Kremer 1993) утверждает, что эта тенденция прослеживается с 1 000 000 лет назад, а С. П. Капица (1996; 1999) даже настаивал на том, что ее можно проследить начиная примерно с 4 000 000 года до н. э.

...

Подобные документы

  • Сущность глобального вектора приоритета альтернатив по данным матрицам. Анализ собственного вектора матрицы, этапы создания диагональной матрицы. Расчет глобального вектора приоритетов альтернатив с условием согласованности матриц парных сравнений.

    контрольная работа [241,9 K], добавлен 05.06.2012

  • Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.

    курсовая работа [2,9 M], добавлен 11.07.2012

  • Открытие формулы австрийским математиком Георгом Пиком в 1899 году. Доказательство Теоремы Пика, последовательность этапов для различных вариантов. Нахождение и расчет площадей четырехугольников в квадратных сантиметрах с использованием данной формулы.

    презентация [1,1 M], добавлен 14.04.2013

  • Выведены формулы, возможно ранее неизвестные, для решений уравнения Пифагора, Формулы отличаются от общеизвестных формул древних индусов и вавилонян.

    статья [31,7 K], добавлен 26.06.2008

  • Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.

    лабораторная работа [195,9 K], добавлен 21.12.2015

  • Схема полного исследования бесконечно больших и малых функций и построение их графика. Арифметические теоремы о пределе функции. Применение формулы Тейлора, Маклорена, Коши, Лопиталя-Бернулли. Теорема о производной вектор-функции постоянной длины.

    курс лекций [1,3 M], добавлен 14.12.2012

  • Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.

    курс лекций [119,3 K], добавлен 21.04.2009

  • Минимизация заданного выражения алгебры множеств на основании известных свойств. Анализ заданного бинарного отношения в общем виде. Вывод формул булевых функций для каждого элемента и схемы в целом. Преобразование формулы булевой функции логической схемы.

    контрольная работа [286,7 K], добавлен 28.02.2009

  • "Преобразования Лоренца" как формальный математический прием для согласования электродинамики с механикой. Пространственные и временные соотношения между данными событиями в разных инерциальных системах отсчета. Равенство поперечных размеров тел.

    реферат [69,6 K], добавлен 05.04.2013

  • Соотношения между операторами дифференцирования и конечных разностей. Разностная аппроксимация дифференциальных уравнений. Интерполяционные рекуррентные формулы, метод Эйлера. Интерполяция конечными разностями "назад". Рекуррентные формулы Адамса.

    реферат [156,8 K], добавлен 08.08.2009

  • Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

    учебное пособие [659,6 K], добавлен 07.05.2012

  • Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация [1,9 M], добавлен 26.01.2015

  • Понятие и сущность факториала, его обозначение и применение в математических исчислениях. Основные свойства факториалов, история создания и способы представления формулы Стирлинга-Муавра. Научная деятельность Джеймса Стирлинга и Абрахама де Муавра.

    презентация [274,8 K], добавлен 23.06.2013

  • Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.

    курсовая работа [261,6 K], добавлен 05.09.2009

  • Интерполирование функции в точке, лежащей в окрестности середины интервала. Интерполяционные формулы Гаусса. Формула Стирлинга как среднее арифметическое интерполяционных формул Гаусса. Кубические сплайн-функции как математическая модель тонкого стержня.

    презентация [88,1 K], добавлен 18.04.2013

  • Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.

    задача [276,1 K], добавлен 20.02.2011

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.

    курсовая работа [260,2 K], добавлен 10.04.2011

  • Плоскость частота-время для анализа и сравнения частотно-временных локализационных свойств различных базисов. Понятие базисных функций. Прямое и обратное преобразование Фурье. Сущность дискретного вейвлет-преобразования и примеры функции вейвлет.

    курсовая работа [486,0 K], добавлен 21.11.2010

  • Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.

    курсовая работа [107,1 K], добавлен 29.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.