Математический анализ

Анализ многочленов Лежандра и Чебышева, преобразования Лапласа. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке, с применением смещенных многочленов Лежандра, смещенных многочленов Чебышева первого рода.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 01.12.2020
Размер файла 620,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Оглавление

  • Введение
  • 1.Многочлены Лежандра
    • 2.Многочлены Чебышева
      • 3.Преобразование Лапласа
  • 4.Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке
    • 5.Обращение преобразования Лапласа с помощью смещенных многочленов Лежандра
  • 6.Обращение преобразования Лапласа с помощью смещенных многочленов Чебышева первого рода
    • Заключение
    • Список литературы
    • Введение
    • Математический анализ - раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.
    • Начало математическому анализу положил в 1665 И. Ньютон и (около 1675) независимо от него Г. Лейбниц, хотя важную подготовительную работу провели И. Кеплер (1571-1630), Ф. Кавальери (1598-1647), П. Ферма (1601-1665), Дж. Валлис (1616-1703) и И. Барроу (1630-1677).
    • Операционное исчисление -раздел математики, занимающийся главным образом алгебраическими операциями, производимыми над символами операции (или преобразования).
    • Во многих задачах математического анализа рассматриваются ситуации, в которых каждая точка одного пространства ставится в соответствие некоторой точке другого (или того же) пространства. Пространства могут быть абстрактными, в которых «точки» в действительности являются функциями. Соответствие между двумя точками устанавливается с помощью преобразования или оператора. В задачу теории операторов входит подробное описание и классификация различных видов преобразований и их свойств, а также разработка символических методов, позволяющих минимизировать и упростить вычисления. Обычно теорию операторов применяют к пространствам, в которых допускается сложение или умножение точек, т.е. линейным пространствам, группам, кольцам, полям и т.д.
    • Операционное исчисление позволяет осуществить абстрактные постановки задач и обобщить такие разделы математического анализа, как теория дифференциальных и интегральных уравнений. Мощным стимулом для развития теории операторов стали современные проблемы квантовой теории. Наиболее полные результаты получены для дистрибутивных операторов в т.н. гильбертовом пространстве. Интерес к этой области во многом связан с представлением таких операторов интегральными преобразованиями.
    • В середине XIX века появился ряд сочинений, посвящённых так называемому символическому исчислению и применению его к решению некоторых типов линейных дифференциальных уравнений. Сущность символического исчисления состоит в том, что вводятся в рассмотрение и надлежащим образом интерпретируются функции оператора дифференцирования.
    • .
    • Среди сочинений по символическому исчислению следует отметить вышедшую в 1862 году в Киеве обстоятельную монографию русского математика М.Е. Ващенко-Захарченко «Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений». В ней поставлены и разрешены основные задачи того метода, который в дальнейшем получил название операционного.
    • В 1892 году появились работы английского учёного О. Хевисайда, посвящённые применению метода символического исчисления к решению задач по теории распространения электрических колебаний в проводах.
    • В отличие от своих предшественников, Хевисайд определил обратный оператор однозначно, полагая и считая f(u ) = 0 для u < 0. Труды Хевисайда положили начало систематическому применению символического, или операционного, исчисления к решению физических и технических задач.
    • Однако широко развитое в трудах Хевисайда операционное исчисление не получило математического обоснования, и многие его результаты оставались недоказанными. Строгое обоснование было дано значительно позже, когда была установлена связь между функциональным преобразованием Лапласа и оператором дифференцирования
    • если существует производная , для которой
    • существует и f (0) = 0, то
    • .
    • Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований. Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач теории упругости, теплопроводности, электродинамики и других разделов математической физики. Использование интегральных преобразований позволяет свести дифференциальное, интегральное или интегро-дифференциальное уравнение к алгебраическому, а также, в случае дифференциального уравнения в частных производных, уменьшить размерность.
    • Интегральные преобразования задаются формулой
    • , (1)
    • где функции называются оригиналом и изображением соответственно, и являются элементами некоторого функционального пространства , при этом функция называется ядром интегрального преобразования.
    • Большинство интегральных преобразований являются обратимыми, то есть по известному изображению можно восстановить оригинал, зачастую также интегральным преобразованием:
    • (2)
    • Хотя свойства интегральных преобразований достаточно обширны, у них довольно много общего.
    • 1. Многочлены Лежандра
    • преобразование лапласа многочлен лежандра
    • Многочлены Лежандра -- многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов ортогонализацией Грама Ї Шмидта.
    • Названы по имени французского математика Адриен Мари Лежандра.
    • Многочлены Лежандра определяются по формуле (называемой формулой Родрига)
    • (3)
    • часто записываемой в виде:
    • (4)
    • Многочлены Лежандра также определяются по следующим формулам:
    • , если ;
    • , если .
    • Они также могут быть вычислены по рекуррентной формуле:
    • Первые многочлены Лежандра равны:
    • 2. Многочлены Чебышева
    • Многочлены Чебышева -- две последовательности многочленов Tn (x ) и Un (x ), названные в честь Пафнутия Львовича Чебышева.
    • Многочлены Чебышева играют важную роль в теории приближений, поскольку корни многочленов Чебышева первого рода используются в качестве узлов в интерполяции алгебраическими многочленами.
    • Многочлен Чебышева первого рода Tn (x ) характеризуется как многочлен степени n со старшим коэффициентом 2n - 1 , который меньше всего отклоняется от нуля на интервале [ ? 1,1]. Впервые рассмотрены самим Чебышёвым.
    • Многочлены Чебышева первого рода Tn (x ) могут быть определены с помощью рекуррентного соотношения:
    • Многочлены Чебышева первого рода могут быть также определены с помощью равенства:
    • или, что почти эквивалентно,
    • Несколько первых многочленов Чебышева первого рода
    • Многочлены Чебышева обладают следующими свойствами:
    • Ортогональность по отношению к соответствующим скалярному произведению (с весом для многочленов первого рода и для многочленов второго рода).
    • Среди всех многочленов, значения которых на отрезке [ ? 1,1] не превосходят по модулю 1, многочлен Чебышева имеет: наибольший старший коэффициент наибольшее значение в любой точке за пределами [ ? 1,1] если , то , где tk -- коэффициент многочлена Чебышева первого рода, ak-- коэффициент любого из рассматриваемых полиномов.
    • Нули полиномов Чебышева являются оптимальными узлами в различных интерполяционных схемах. Например, в методе дискретных особенностей, который часто используется при исследовании интегральных уравнений в электродинамике и аэродинамике.
    • 3. Преобразование Лапласа
    • Преобразование Лапласа -- интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
    • Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.
    • Интеграл Лапласа имеет вид:
    • (5)
    • где интегрирование производится по некоторому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z), определенной на L, аналитическую функцию F(p) комплексного переменного p=s+it. Многие интегралы вида (5) были рассмотрены П. Лапласом.
    • В узком смысле под преобразованием Лапласа подразумевают одностороннее преобразование Лапласа
    • , (6)
    • называемое так в отличие от двустороннего преобразования Лапласа
    • (7)
    • Преобразование Лапласа - частный вид интегральных преобразований;. преобразования вида (6) или (7) тесно связаны с Фурье преобразованием. Двустороннее преобразование Лапласа (7) можно рассматривать как преобразование Фурье функции , одностороннее преобразование Лапласа (6) - как преобразование Фурье функции j(t) равной при 0 < t < ? и равной нулю при -? < t < 0.
    • Подынтегральная комплексная локально суммируемая функция f(t) называется функцией-оригиналом, или просто оригиналом; в приложениях часто удобно трактовать переменное t как время. Функция F(p)=L[f], (р) называется также преобразованием Лапласа оригинала f(t) или изображением по Лапласу. Интеграл (6) понимается, вообще говоря, как условно сходящийся на бесконечности.
    • Априори возможны три случая:
    • 1) существует действительное число такое, что интеграл (6) сходится при , а при - расходится; это число ус называется абсциссой (условной) сходимости;
    • 2) интеграл (6) сходится при всех р, в этом случае полагают ;
    • 3) интеграл (6) расходится при всех р, в этом случае полагают
    • Если , то интеграл (6) представляет однозначную аналитическую функцию F(p) в полуплоскости сходимости . Обычно ограничиваются рассмотрением абсолютно сходящихся интегралов (6). Точная нижняя грань тех s, для которых существует интеграл , называется абсциссой абсолютной сходимости
    • Если а - есть нижняя грань тех s, для которых число а иногда называют показателем роста оригинала f(t).
    • При некоторых дополнительных условиях оригинал f(t) однозначно восстанавливается по своему F(p).Например, если f(t) имеет ограниченную вариацию в окрестности точки t0 или если f(t) кусочногладкая, то имеет место формула обращения преобразования Лапласа:
    • (8)
    • Формулы (6) и (8) позволяют получить ряд соотношений между операциями, производимыми над оригиналами и изображениями, а также таблицу изображений для часто встречающихся оригиналов. Все это составляет элементарную часть операционного исчисления.
    • В математической физике важные применения находит многомерное преобразование Лапласа:
    • (9)
    • где t = ( t 1 , ……, tn )
    • -точка re-мерного евклидова пространства
    • Rn , p = ( p 1 , ……, pn ) = у + = ( у 1 , ……, у n ) + (ф1 , ……, ф n )
    • -точка комплексного пространства
    • Cn , n ?1, ( p , t ) = ( у , t )+ i ( ф , t ) = p 1 t 1 + … + pn tn
    • -скалярное произведение, dt = dt 1 dtn - элемент объема в Rn . Комплексная функция f(t) в (9) определена и локально суммируема в области интегрирования
    • -положительном координатном угле пространства Rn . Если функция f(t) ограничена в C* , то интеграл (9) существует во всех точках удовлетворяющих условию Re ( p , t )>0 , , которое определяет снова положительный координатный угол
    • Интеграл (9) определяет голоморфную функцию комплексных переменных p = ( p 1 ,- pn ) в трубчатой области пространства с основанием S. В более общем случае в качестве области интегрирования в (9) и основания Sтрубчатой области можно взять любую пару сопряженных замкнутых выпуклых острых конусов в пространстве с вершиной в начале координат. При n=1 формула (9) переходит в (6), причем - положительная полуось и - правая полуплоскость. Преобразование Лапласа (9) определено и голоморфно и для функций f(t) гораздо более широких классов. Элементарные свойства преобразования Лапласа с соответствующими изменениями остаются справедливыми и для многомерного случая.
    • Численное преобразование Лапласа - численное выполнение преобразования (6), переводящего оригинал f ( t), 0< t <? в изображение F(p), , а также численное обращение преобразования Лапласа, т. е. численное нахождение f(t) из интегрального уравнения (6) либо по формуле обращения (8).
    • Необходимость применения численного преобразования Лапласа возникает вследствие того, что таблицы оригиналов и изображений охватывают далеко не все встречающиеся в практике случаи, а также вследствие того, что оригинал или изображение зачастую выражаются слишком сложными, неудобными для применений формулами.
    • Проблема обращения преобразования Лапласа, как задача отыскания решения f(x) интегрального уравнения первого рода (6), относится к классу некорректных задач и может быть решена, в частности, посредством регуляризирующего алгоритма.
    • Задачу численного обращения преобразования Лапласа можно также решать методами, основанными на разложении функции-оригинала в функциональный ряд. Сюда в первую очередь можно отнести разложение в степенной ряд, в обобщенный степенной ряд, в ряд по показательным функциям, а также в ряды по ортогональным функциям, в частности по многочленам Чебышева, Лежандра, Якоби и Лагерра. Задача разложения оригинала в ряды по многочленам Чебышева, Лежандра, Якоби в окончательном своем виде сводится к проблеме моментов на конечном промежутке. Пусть известно преобразование Лапласа F(p) функции в( t ) f ( t ):
    • где f(t) - искомая функция, а в(t) - неотрицательная, интегрируемая на [0,?) функция. Предполагается, что функция f(t) интегрируема на любом конечном отрезке [0, Т] и принадлежит классу L 2 (в( t ), 0, ?). По изображению F(р).функции в(t), f(t), функция f(t) строится в виде ряда по смещенным многочленам Якоби, в частности по смещенным многочленам Лежандра, Чебышева первого и второго рода, коэффициенты которого ak вычисляются по формуле.
    • где - коэффициенты смещенного многочлена Лежандра, Чебышева первого и второго рода соответственно, записанных в виде
    • Другим приемом численного обращения преобразования Лапласа является построение квадратурных формул для интеграла обращения (8).
    • 4. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке
    • Постановка задачи
    • Задачу преобразования Лапласа можно решать методами, основанными на разложении оригинала в ряды по ортогональным функциям, в частности по многочленам Чебышева, Лежандра и Якоби.Эта задача, которая в окончательном своем виде сводится к проблеме моментов на конечном промежутке, была подвергнута изучению в работах многих авторов.
    • Рассмотрим постановку этой задачи в таком виде, как это сделано в работах В.М. Амербаева и в книге В.А. Диткина и А.П. Прудникова [2].
    • Пусть известно преобразование Лапласа F ( p ) функции в( t ) f ( t ):
    • (10)
    • Где f(t ) - искомая функция, а в(t ) - неотрицательная, абсолютно интегрируемая на [0,?) функция. Предположим, что функция f(t ) интегрируема на любом конечном отрезке [0, Т] и принадлежит классу L 2 (в( t ), 0, ?):
    • (11)
    • Требуется по изображению F(р ) функции в(t)f(t), построить функцию f(t ).
    • В интеграле (10) введем замену переменной x = e - t ; тогда он приведется к виду
    • (12)
    • где
    • В силу условий, которые наложены на функции f(t ) и в(t ), интеграл (12) сходится всюду в плоскости Re p ?,0, поэтому переменной р можно придать значения 0, 1, 2, … и получить «взвешенные моменты» функции
    • (13)
    • После этого решаемую задачу можно сформулировать так: найти функцию по ее «взвешенным моментам» , или, что тоже самое, найти функцию f(t ) по значениям изображения функции в(t)f(t) в целочисленных точках p = k ( k = 0, 1, 2, …). В частном случае эту задачу можно упростить и по первым п + 1 «взвешенным моментам» искать многочлен , такой, чтобы его «взвешенные моменты» совпадали с заданными моментами функции , то есть чтобы выполнялись равенства
    • (14)
    • 5. Обращение преобразования Лапласа с помощью смещенных многочленов Лежандра
    • Рассмотрим частный случай весовой функции
    • (15)
    • или .
    • Многочленами, ортогональными на отрезке [0,1] с весом , будут смещены многочлены Лежандра
    • Они задаются формулой
    • при
    • или же формулой
    • Величина rn в этом случае равна
    • и разложение функции f(t ) по смещенным многочленам Лежандра имеет вид
    • (16)
    • Величины бk вычисляются по формуле
    • (17)
    • в которой - коэффициенты смещенного многочлена Лежандра
    • 6. Обращение преобразования Лапласа с помощью смещенных многочленов Чебышева первого рода
    • Положим теперь Весовая функция имеет вид
    • и
    • Смещенные многочлены Чебышева первого рода являются ортогональной системой на [0,1] по весу
    • Многочлены Якоби отличаются от только численным множителем, а именно
    • ,
    • где
    • Многочлены имеют вид
    • Значения rn вычисляются по формулам
    • а разложение функции f(t ) по смещенным многочленам Чебышева первого рода имеет вид
    • (18)
    • Коэффициенты ak ( k =0, 1, …) вычисляются по формуле (17), в которой - коэффициенты смещенного многочлена Чебышева первого рода .
    • В вычислениях удобнее пользоваться тригонометрической записью многочленов , а именно:
    • Сделав замену переменной 2 x - 1 = cosи (0?и?р) и учитывая, что разложение (18) можно переписать в виде:
    • Заключение
    • Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований.
    • Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач теории упругости, теплопроводности, электродинамики и других разделов математической физики.
    • Преобразование Лапласа -- интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
    • Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями.
    • Интеграл Лапласа имеет вид:
    • где интегрирование производится по некоторому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z), определенной на L, аналитическую функцию F(p) комплексного переменного p=s+it.
    • Численное преобразование Лапласа - численное выполнение преобразования
    • ,
    • переводящего оригинал f ( t ), 0< t <? в изображение F(p), , а также численное обращение преобразования Лапласа.
    • Необходимость применения численного преобразования Лапласа возникает вследствие того, что таблицы оригиналов и изображений охватывают далеко не все встречающиеся в практике случаи, а также вследствие того, что оригинал или изображение зачастую выражаются слишком сложными, неудобными для применений формулами.
    • Задачу численного обращения преобразования Лапласа можно также решать методами, основанными на разложении функции-оригинала в функциональный ряд. Сюда в первую очередь можно отнести разложение в степенной ряд, в обобщенный степенной ряд, в ряд по показательным функциям, а также в ряды по ортогональным функциям, в частности по многочленам Чебышева, Лежандра, Якоби и Лагерра. Задача разложения оригинала в ряды по многочленам Чебышева, Лежандра, Якоби в окончательном своем виде сводится к проблеме моментов на конечном промежутке. Пусть известно преобразование Лапласа F(p) функции в( t ) f ( t ):
    • где f(t) - искомая функция, а в(t) - неотрицательная, интегрируемая на [0,?) функция.
    • Список литературы
    • преобразование лапласа многочлен лежандра
    • 1. Ван дер Поль Б., Бремер Х. Операционное исчисление на основе двустороннего преобразования Лапласа. -- М.: Издательство иностранной литературы, 1952. -- 507 с.
    • 2. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. -- М.: Главная редакция физико-математической литературы издательства «Наука», 1974. -- 544 с.
    • 3. Кожевников Н.И., Краснощекова Т.И., Шишкин Н.Е. Ряды и интегралы Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. -- М.: Наука, 1964. -- 184 с.
    • 4. Крылов В.И., Скобля Н.С. Методы приближенного преобразования Фурье и обращения преобразования Лапласа. - М.: Наука, 1974. - 226 с.
    • Размещено на Allbest.ru
...

Подобные документы

  • Математический анализ и операционное исчисление. Обращение преобразования с помощью многочленов, ортогональных на промежутке. Интегральное преобразования Лапласа с помощью смещенных многочленов Лежандра и многочленов Чебышева первого рода.

    реферат [503,6 K], добавлен 10.02.2011

  • Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.

    курсовая работа [2,5 M], добавлен 30.06.2011

  • Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.

    курсовая работа [391,8 K], добавлен 19.12.2012

  • Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.

    курсовая работа [1,2 M], добавлен 04.07.2015

  • Теория высшей алгебры в решении задач элементарной математики. Программы для нахождения частного и остатка при делении многочленов, наибольшего общего делителя двух многочленов, производной многочлена; разложения многочленов на кратные множители.

    дипломная работа [462,8 K], добавлен 09.01.2009

  • Роль многочленов Чебышева в теории приближений и их использование в качестве узлов при интерполяции алгебраическими многочленами. Преимущества разложения функции по полиномам Чебышева. Разработка программы численного расчета решения подобной задачи.

    контрольная работа [184,2 K], добавлен 13.05.2014

  • Рекурсивное, тригонометрическое определение и свойства многочленов Чебышёва. Сущность теоремы Е.И. Золотарёва-А.Н. Коркина. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Обобщение метода Грамма-Шарлье.

    курсовая работа [1,1 M], добавлен 11.01.2011

  • Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.

    курсовая работа [459,1 K], добавлен 21.11.2014

  • Утверждение великого французского математика Пьера Ферма, получившее название "Великая теорема Ферма". Элементарные алгебраические преобразования многочленов. Коэффициенты полиномов Чебышева и формулы Абеля. Система наименьших вычетов по модулю K.

    книга [150,6 K], добавлен 07.01.2011

  • Основные этапы развития булевой алгебры и применение минимальных форм булевых многочленов к решению задач, в частности, с помощью метода Куайна - Мак-Класки. Применение минимизирования логических форм при проектировании устройств цифровой электроники.

    курсовая работа [58,6 K], добавлен 24.05.2009

  • Понятие многочленов и их свойства. Сущность метода неопределённых коэффициентов. Разложения многочлена на множители. Максимальное число корней многочлена над областью целостности. Методические рекомендации по изучению темы "Многочлены" в школьном курсе.

    дипломная работа [733,7 K], добавлен 20.07.2011

  • Понятие многочлена и его степени. Многочлен, у которого все коэффициенты равны нулю. Многочлены от одной переменной. Равенство и значение многочленов. Операции над многочленами, основные понятия схемы Горнера. Кратные и рациональные корни многочлена.

    курсовая работа [90,2 K], добавлен 15.06.2010

  • Булевы алгебры – решетки особого типа, применяемые при исследовании логики (как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Минимальные формы булевых многочленов. Теоремы абстрактной булевой алгебры.

    курсовая работа [64,7 K], добавлен 12.05.2009

  • Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.

    реферат [674,0 K], добавлен 26.11.2010

  • Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.

    задача [226,9 K], добавлен 21.06.2009

  • Отражение посредством математической функции связи между какими-либо значениями. Представление числовых функций на рисунках в виде графиков. Особенности алгебраической функции и многочленов. Практическое применение линейных и квадратических функций.

    презентация [251,3 K], добавлен 07.10.2014

  • Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи.

    курсовая работа [335,8 K], добавлен 31.05.2016

  • Реализация в пакете Mathcad альтернативных возможностей для получения ортогональных систем, с помощью которых можно получать аналитические выражения. Введение документа Mathcad, реализующего явные выражения для ортогональных систем Лежандра и Лагерра.

    дипломная работа [641,5 K], добавлен 01.05.2014

  • Биографические данные Пафнутия Львовича Чебышева. Детские годы ученого, получение образования. Переезд в Петербург и защита в Петербургском университете диссертации. Наибольшее число работ Чебышева посвящено математическому анализу. Теория механизмов.

    реферат [17,8 K], добавлен 22.12.2009

  • М- и (М-1)-последовательности на основе произведения многочленов. Результаты по синтезу модели: структурная схема, методика построения по алгоритму Хемминга и по корреляционному моменту, аффинному преобразованию для заданного множества векторов.

    контрольная работа [960,4 K], добавлен 24.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.