Понятия события и вероятности события
Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
Рубрика | Математика |
Предмет | Математика и статистика |
Вид | реферат |
Язык | русский |
Прислал(а) | Тюрина Анна Станиславовна |
Дата добавления | 05.12.2021 |
Размер файла | 18,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Пространство элементарных событий, совместные и несовместные события, поиск их вероятности. Функция распределения системы случайных величин. Числовые характеристики системы: математическое ожидание и дисперсия. Оценка закона генеральной совокупности.
задача [73,6 K], добавлен 15.06.2012Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.
презентация [1,4 M], добавлен 19.07.2015Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
контрольная работа [106,1 K], добавлен 23.06.2009События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.
контрольная работа [118,5 K], добавлен 30.01.2015Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.
шпаргалка [945,2 K], добавлен 18.06.2012Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.
контрольная работа [705,1 K], добавлен 22.11.2013Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.
задача [82,0 K], добавлен 12.02.2011Понятие комплекса случайных величин, закона их распределения и вероятностной зависимости. Числовые характеристики случайных величин: математическое ожидание, момент, дисперсия и корреляционный момент. Показатель интенсивности связи между переменными.
курсовая работа [2,4 M], добавлен 07.02.2011Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.
практическая работа [103,1 K], добавлен 15.06.2012Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.
лекция [285,3 K], добавлен 17.12.2010Случайный процесс в теории вероятностей. Математическое ожидание и дисперсия. Многомерные законы распределения. Вероятностные характеристики "входной" и "выходной" функций. Сечение случайной функции. Совокупность случайных величин, зависящих от параметра.
курсовая работа [1,8 M], добавлен 23.12.2012Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.
задача [104,1 K], добавлен 14.01.2011Фактор как одна из случайных величин, зависимость между которыми анализируется. Дисперсия как характеристика общей изменчивости значений У. Математическое ожидание как центр группирования значений У при Х=а. Нахождение коэффициента детерминации.
презентация [115,4 K], добавлен 01.11.2013Классическое, статистическое и геометрическое определения вероятности. Дискретные случайные величины и законы их распределения. Числовые характеристики системы случайных величин. Законы равномерного и нормального распределения систем случайных величин.
дипломная работа [797,0 K], добавлен 25.02.2011Вероятность появления события в серии из независимых испытаний. Закон распределения дискретной случайной, интегральной, дифференциальной, имперической функции распределения, математическое ожидание, дисперсия, и среднее квадратическое отклонение.
контрольная работа [397,9 K], добавлен 15.11.2010Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.
шпаргалка [328,7 K], добавлен 04.05.2015Нахождение плотности, среднеквадратического отклонения, дисперсии, ковариации и коэффициента корреляции системы случайных величин. Определение доверительного интервала для оценки математического ожидания нормального распределения с заданной надежностью.
контрольная работа [200,3 K], добавлен 16.08.2010Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.
контрольная работа [59,7 K], добавлен 26.07.2010Математическое ожидание дискретной случайной величины, его свойства и определение. Дисперсия и формула для ее вычисления. Среднее квадратическое отклонение. Ковариация и коэффициент корреляции. Коррелированные и некоррелированные случайные величины.
курсовая работа [133,7 K], добавлен 05.06.2011