Математика в древнем мире

История рождения теории отношения и геометрической математики. Появление аксиомы Архимеда в древней Греции, задач на пропорции, линейные и квадратные уравнения, дроби. Развитие математики в Древнем Востоке, Китае и Индии. Создание системы счисления.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 16.02.2022
Размер файла 27,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Астраханский государственный университет»

Контрольная работа

ПО ТЕМЕ: Математика в древнем мире

Астрахань, 2021

Содержание

Введение

Глава 1. Математика в древности

1.1 Вавилония

1.2 Египет

1.3 Греческая математика

1.4 Индия

Введение

Математика, является основой половины всех наук, изучаемых в школе. С помощью нее, человек смог создать технику, которая сегодня, значительно, облегчает жизнь человека.

Математика - это точная наука, которая прикладывается ко всем остальным. Отсюда следует вывод, что не одна наука не может существовать без математики. И действительно, можно ли сегодня представить физику, химию, медицину, астрологию или биологию без использования арифметики? Математика проделала не легкий долгий путь, она зародилась еще в древнем мире. Древний Египет стал страной, где появились первые цифры и первые геометрические знания. В Древнем Вавилоне появилась шестидесятеричная система исчисления. Появилась простая арифметика, появилась «Пифогорская тройка». Затем произошло соединение знаний Вавилона и египтян, такое соединение дало новую ветвь в развитии математики в целом.

Историю математики можно, плавно перенести в Древнюю Грецию, где родилась первая теория отношения и первая геометрическая математика, появились первые циркули и линейки. В древней Греции появились аксиомы Архимеда. Именно в древней Греции математика приложилась к другой науке. математика геометрический архимед счисление

Государства средиземноморья открыли аксиомы и структуру математики «начал». Именно в древних государствах Эллинизма пошли первые разговоры о космосе. Были открыты дифференциалы и интегралы, а также способы расчета с их помощью.

В развитии математики, особое значение можно отдать государствам Древнего Востока, Китая и Индии. Где мудрецы придумали задачи на пропорции, линейные и квадратные уравнения, дроби и в первые появился - как число. Вспоминая про Древнюю Индию, хочется упомянуть, что эта страна является родиной шахмат, где уж точно без точных расчетов никуда. А серия книг «Математика в 9 книгах» является основным памятником Древнего Китая. Именно здесь появились счетные доски.

Глава 1. Математика в древности

1.1 Вавилония

Источником наших знаний о вавилонской цивилизации служат хорошо сохранившиеся глиняные таблички, покрытые т.н. клинописными текстами, которые датируются от 2000 до н.э. и до 300 н.э. Математика на клинописных табличках в основном была связана с ведением хозяйства. Арифметика и нехитрая алгебра использовались при обмене денег и расчетах за товары, вычислении простых и сложных процентов, налогов и доли урожая, сдаваемой в пользу государства, храма или землевладельца. Многочисленные арифметические и геометрические задачи возникали в связи со строительством каналов, зернохранилищ и другими общественными работами. Очень важной задачей математики был расчет календаря, поскольку календарь использовался для определения сроков сельскохозяйственных работ и религиозных праздников. Деление окружности на 360, а градуса и минуты на 60 частей берут начало в вавилонской астрономии.

Вавилоняне создали и систему счисления, использовавшую для чисел от 1 до 59 основание 10. Символ, обозначавший единицу, повторялся нужное количество раз для чисел от 1 до 9. Для обозначения чисел от 11 до 59 вавилоняне использовали комбинацию символа числа 10 и символа единицы. Для обозначения чисел начиная с 60 и больше вавилоняне ввели позиционную систему счисления с основанием 60. Существенным продвижением стал позиционный принцип, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен. Примером могут служить значения шестерки в записи (современной) числа 606. Однако нуль в системе счисления древних вавилонян отсутствовал, из-за чего один и тот же набор символов мог означать и число 65 (60 + 5), и число 3605 (602 + 0 + 5). Возникали неоднозначности и в трактовке дробей. Например, одни и те же символы могли означать и число 21, и дробь 21/60 и (20/60 + 1/602). Неоднозначность разрешалась в зависимости от конкретного контекста.

Вавилоняне составили таблицы обратных чисел (которые использовались при выполнении деления), таблицы квадратов и квадратных корней, а также таблицы кубов и кубических корней. Им было известно хорошее приближение числа. Клинописные тексты, посвященные решению алгебраических и геометрических задач, свидетельствуют о том, что они пользовались квадратичной формулой для решения квадратных уравнений и могли решать некоторые специальные типы задач, включавших до десяти уравнений с десятью неизвестными, а также отдельные разновидности кубических уравнений и уравнений четвертой степени. На глиняных табличках запечатлены только задачи и основные шаги процедур их решения. Так как для обозначения неизвестных величин использовалась геометрическая терминология, то и методы решения в основном заключались в геометрических действиях с линиями и площадями. Что касается алгебраических задач, то они формулировались и решались в словесных обозначениях.

Около 700 до н.э. вавилоняне стали применять математику для исследования движений Луны и планет. Это позволило им предсказывать положения планет, что было важно как для астрологии, так и для астрономии.

В геометрии вавилоняне знали о таких соотношениях, например, как пропорциональность соответствующих сторон подобных треугольников. Им была известна теорема Пифагора и то, что угол, вписанный в полуокружность - прямой. Они располагали также правилами вычисления площадей простых плоских фигур, в том числе правильных многоугольников, и объемов простых тел. Число Пи вавилоняне считали равным 3.

1.2 Египет

Наше знание древнеегипетской математики основано главным образом на двух папирусах, датируемых примерно 1700 до н.э. Излагаемые в этих папирусах математические сведения восходят к еще более раннему периоду - ок. 3500 до н.э. Египтяне использовали математику, чтобы вычислять вес тел, площади посевов и объемы зернохранилищ, размеры податей и количество камней, требуемое для возведения тех или иных сооружений. В папирусах можно найти также задачи, связанные с определением количества зерна, необходимого для приготовления заданного числа кружек пива, а также более сложные задачи, связанные с различием в сортах зерна; для этих случаев вычислялись переводные коэффициенты.

Но главной областью применения математики была астрономия, точнее расчеты, связанные с календарем. Календарь использовался для определения дат религиозных праздников и предсказания ежегодных разливов Нила. Однако уровень развития астрономии в Древнем Египте намного уступал уровню ее развития в Вавилоне.

Древнеегипетская письменность основывалась на иероглифах. Система счисления того периода также уступала вавилонской. Египтяне пользовались непозиционной десятичной системой, в которой числа от 1 до 9 обозначались соответствующим числом вертикальных черточек, а для последовательных степеней числа 10 вводились индивидуальные символы. Последовательно комбинируя эти символы, можно было записать любое число. С появлением папируса возникло так называемое иератическое письмо-скоропись, способствовавшее, в свою очередь, появлению новой числовой системы. Для каждого из чисел от 1 до 9 и для каждого из первых девяти кратных чисел 10, 100 и т.д. использовался специальный опознавательный символ. Дроби записывались в виде суммы дробей с числителем, равным единице. С такими дробями египтяне производили все четыре арифметические операции, но процедура таких вычислений оставалась очень громоздкой.

Геометрия у египтян сводилась к вычислениям площадей прямоугольников, треугольников, трапеций, круга, а также формулам вычисления объемов некоторых тел. Надо сказать, что математика, которую египтяне использовали при строительстве пирамид, была простой и примитивной.

Задачи и решения, приведенные в папирусах, сформулированы чисто рецептурно, без каких бы то ни было объяснений. Египтяне имели дело только с простейшими типами квадратных уравнений и арифметической и геометрической прогрессиями, а потому и те общие правила, которые они смогли вывести, были также самого простейшего вида. Ни вавилонская, ни египетская математики не располагали общими методами; весь свод математических знаний представлял собой скопление эмпирических формул и правил.

Хотя майя, жившие в Центральной Америке, не оказали влияния на развитие математики, их достижения, относящиеся примерно к 4 в., заслуживают внимания. Майя, по-видимому, первыми использовали специальный символ для обозначения нуля в своей двадцатиричной системе. У них были две системы счисления: в одной применялись иероглифы, а в другой, более распространенной, точка обозначала единицу, горизонтальная черта - число 5, а символ Размещено на http://www.allbest.ru/

обозначал нуль. Позиционные обозначения начинались с числа 20, а числа записывались по вертикали сверху вниз..

1.3 Греческая математика

Родоначальниками математики явились греки классического периода (6-4 вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений. Напротив, в дедуктивном рассуждении новое утверждение выводится из принятых посылок способом, исключавшим возможность его неприятия.

Настаивание греков на дедуктивном доказательстве было экстраординарным шагом. Ни одна другая цивилизация не дошла до идеи получения заключений исключительно на основе дедуктивного рассуждения, исходящего из явно сформулированных аксиом. Одно из объяснений приверженности греков методам дедукции мы находим в устройстве греческого общества классического периода. Математики и философы (нередко это были одни и те же лица) принадлежали к высшим слоям общества, где любая практическая деятельность рассматривалась как недостойное занятие. Математики предпочитали абстрактные рассуждения о числах и пространственных отношениях решению практических задач. Математика делилась на арифметику - теоретический аспект и логистику - вычислительный аспект. Заниматься логистикой предоставляли свободнорожденным низших классов и рабам.

Греческая система счисления была основана на использовании букв алфавита. Аттическая система, бывшая в ходу с 6-3 вв. до н.э., использовала для обозначения единицы вертикальную черту, а для обозначения чисел 5, 10, 100, 1000 и 10 000 начальные буквы их греческих названий. В более поздней ионической системе счисления для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы. Кратные 1000 до 9000 обозначались так же, как первые девять целых чисел от 1 до 9, но перед каждой буквой ставилась вертикальная черта. Десятки тысяч обозначались буквой М (от греческого мириои - 10 000), после которой ставилось то число, на которое нужно было умножить десять тысяч.

Дедуктивный характер греческой математики полностью сформировался ко времени Платона и Аристотеля. Изобретение дедуктивной математики принято приписывать Фалесу Милетскому (ок. 640-546 до н.э.), который, как и многие древнегреческие математики классического периода, был также философом. Высказывалось предположение, что Фалес использовал дедукцию для доказательства некоторых результатов в геометрии, хотя это сомнительно.

Другим великим греком, с чьим именем связывают развитие математики, был Пифагор (ок. 585-500 до н.э.). Полагают, что он мог познакомиться с вавилонской и египетской математикой во время своих долгих странствий. Пифагор основал движение, расцвет которого приходится на период ок. 550-300 до н.э. Пифагорейцы создали чистую математику в форме теории чисел и геометрии. Целые числа они представляли в виде конфигураций из точек или камешков, классифицируя эти числа в соответствии с формой возникающих фигур («фигурные числа»). Слово «калькуляция» (расчет, вычисление) берет начало от греческого слова, означающего «камешек». Числа 3, 6, 10 и т.д. пифагорейцы называли треугольными, так как соответствующее число камешков можно расположить в виде треугольника, числа 4, 9, 16 и т.д. - квадратными, так как соответствующее число камешков можно расположить в виде квадрата, и т.д.

Из простых геометрических конфигураций возникали некоторые свойства целых чисел. Например, пифагорейцы обнаружили, что сумма двух последовательных треугольных чисел всегда равна некоторому квадратному числу. Они открыли, что если (в современных обозначениях) n2 - квадратное число, то n2 + 2n +1 = (n + 1)2. Число, равное сумме всех своих собственных делителей, кроме самого этого числа, пифагорейцы называли совершенным. Примерами совершенных чисел могут служить такие целые числа, как 6, 28 и 496. Два числа пифагорейцы называли дружественными, если каждое из чисел равно сумме делителей другого; например, 220 и 284 - дружественные числа (и здесь само число исключается из собственных делителей).

Для пифагорейцев любое число представляло собой нечто большее, чем количественную величину. Например, число 2 согласно их воззрению означало различие и потому отождествлялось с мнением. Четверка представляла справедливость, так как это первое число, равное произведению двух одинаковых множителей.

Пифагорейцы также открыли, что сумма некоторых пар квадратных чисел есть снова квадратное число. Например, сумма 9 и 16 равна 25, а сумма 25 и 144 равна 169. Такие тройки чисел, как 3, 4 и 5 или 5, 12 и 13, называются пифагоровыми числами. Они имеют геометрическую интерпретацию, если два числа из тройки приравнять длинам катетов прямоугольного треугольника, то третье число будет равно длине его гипотенузы. Такая интерпретация, по-видимому, привела пифагорейцев к осознанию более общего факта, известного ныне под названием теоремы Пифагора, согласно которой в любом прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Рассматривая прямоугольный треугольник с единичными катетами, пифагорейцы обнаружили, что длина его гипотенузы равна, и это повергло их в смятение, ибо они тщетно пытались представить число Размещено на http://www.allbest.ru/

в виде отношения двух целых чисел, что было крайне важно для их философии. Величины, непредставимые в виде отношения целых чисел, пифагорейцы назвали несоизмеримыми; современный термин - «иррациональные числа». Около 300 до н.э. Евклид доказал, что число несоизмеримо. Пифагорейцы имели дело с иррациональными числами, представляя все величины геометрическими образами. Если 1 и 2 считать длинами некоторых отрезков, то различие между рациональными и иррациональными числами сглаживается. Произведение чисел Размещено на http://www.allbest.ru/

и Размещено на http://www.allbest.ru/

есть площадь прямоугольника со сторонами длиной. Мы и сегодня иногда говорим о числе 25 как о квадрате 5, а о числе 27 - как о кубе 3.

Древние греки решали уравнения с неизвестными посредством геометрических построений. Были разработаны специальные построения для выполнения сложения, вычитания, умножения и деления отрезков, извлечения квадратных корней из длин отрезков; ныне этот метод называется геометрической алгеброй.

Приведение задач к геометрическому виду имело ряд важных последствий. В частности, числа стали рассматриваться отдельно от геометрии, поскольку работать с несоизмеримыми отношениями можно было только с помощью геометрических методов. Геометрия стала основой почти всей строгой математики по крайней мере до1600. И даже в 18 в., когда уже были достаточно развиты алгебра и математический анализ, строгая математика трактовалась как геометрия, и слово «геометр» было равнозначно слову «математик».

Именно пифагорейцам мы во многом обязаны той математикой, которая затем была систематизированно изложена и доказана в Началах Евклида. Есть основания полагать, что именно они открыли то, что ныне известно как теоремы о треугольниках, параллельных прямых, многоугольниках, окружностях, сферах и правильных многогранниках.

Одним из самых выдающихся пифагорейцев был Платон (ок. 427-347 до н.э.). Платон был убежден, что физический мир постижим лишь посредством математики. Считается, что именно ему принадлежит заслуга изобретения аналитического метода доказательства. (Аналитический метод начинается с утверждения, которое требуется доказать, и затем из него последовательно выводятся следствия до тех пор, пока не будет достигнут какой-нибудь известный факт; доказательство получается с помощью обратной процедуры.) Принято считать, что последователи Платона изобрели метод доказательства, получивший название «доказательство от противного». Заметное место в истории математики занимает Аристотель, ученик Платона. Аристотель заложил основы науки логики и высказал ряд идей относительно определений, аксиом, бесконечности и возможности геометрических построений.

Величайшим из греческих математиков классического периода, уступавшим по значимости полученных результатов только Архимеду, был Евдокс (ок. 408-355 до н.э.). Именно он ввел понятие величины для таких объектов, как отрезки прямых и углы. Располагая понятием величины, Евдокс логически строго обосновал пифагорейский метод обращения с иррациональными числами.

Работы Евдокса позволили установить дедуктивную структуру математики на основе явно формулируемых аксиом. Ему же принадлежит и первый шаг в создании математического анализа, поскольку именно он изобрел метод вычисления площадей и объемов, получивший название «метода исчерпывания». Этот метод состоит в построении вписанных и описанных плоских фигур или пространственных тел, которые заполняют («исчерпывают») площадь или объем той фигуры или того тела, которое является предметом исследования. Евдоксу же принадлежит и первая астрономическая теория, объясняющая наблюдаемое движение планет. Предложенная Евдоксом теория была чисто математической; она показывала, каким образом комбинации вращающихся сфер с различными радиусами и осями вращения могут объяснить кажущиеся нерегулярными движения Солнца, Луны и планет.

Около 300 до н.э. результаты многих греческих математиков были сведены в единое целое Евклидом, написавшим математический шедевр Начала. Из немногих проницательно отобранных аксиом Евклид вывел около 500 теорем, охвативших все наиболее важные результаты классического периода. Свое сочинение Евклид начал с определения таких терминов, как прямая, угол и окружность. Затем он сформулировал десять самоочевидных истин, таких, как «целое больше любой из частей». И из этих десяти аксиом Евклид смог вывести все теоремы. Для математиков текст Начал Евклида долгое время служил образцом строгости, пока в 19 в. не обнаружилось, что в нем имеются серьезные недостатки, такие как неосознанное использование несформулированных в явном виде допущений.

Аполлоний (ок. 262-200 до н.э.) жил в александрийский период, но его основной труд выдержан в духе классических традиций. Предложенный им анализ конических сечений - окружности, эллипса, параболы и гиперболы - явился кульминацией развития греческой геометрии. Аполлоний также стал основателем количественной математической астрономии.

Александрийский период. В этот период, который начался около 300 до н.э., характер греческой математики изменился. Александрийская математика возникла в результате слияния классической греческой математики с математикой Вавилонии и Египта. В целом математики александрийского периода были больше склонны к решению чисто технических задач, чем к философии. Великие александрийские математики - Эратосфен, Архимед, Гиппарх, Птолемей, Диофант и Папп - продемонстрировали силу греческого гения в теоретическом абстрагировании, но столь же охотно применяли свой талант к решению практических проблем и чисто количественных задач.

Эратосфен (ок. 275-194 до н.э.) нашел простой метод точного вычисления длины окружности Земли, ему же принадлежит календарь, в котором каждый четвертый год имеет на один день больше, чем другие. Астроном Аристарх (ок. 310-230 до н.э.) написал сочинение О размерах и расстояниях Солнца и Луны, содержавшее одну из первых попыток определения этих размеров и расстояний; по своему характеру работа Аристарха была геометрической.

Величайшим математиком древности был Архимед (ок. 287-212 до н.э.). Ему принадлежат формулировки многих теорем о площадях и объемах сложных фигур и тел, вполне строго доказанные им методом исчерпывания. Архимед всегда стремился получить точные решения и находил верхние и нижние оценки для иррациональных чисел. Например, работая с правильным 96-угольником, он безукоризненно доказал, что точное значение числа p находится между 31/7 и 310/71. Архимед доказал также несколько теорем, содержавших новые результаты геометрической алгебры. Ему принадлежит формулировка задачи о рассечении шара плоскостью так, чтобы объемы сегментов находились между собой в заданном отношении. Архимед решил эту задачу, отыскав пересечение параболы и равнобочной гиперболы.

Архимед был величайшим математическим физиком древности. Для доказательства теорем механики он использовал геометрические соображения. Его сочинение О плавающих телах заложило основы гидростатики. Согласно легенде, Архимед открыл носящий его имя закон, согласно которому на тело, погруженное в воду, действует выталкивающая сила, равная весу вытесненной им жидкости, во время купания, находясь в ванной, и не в силах совладать с охватившей его радостью открытия, выбежал обнаженный на улицу с криком: «Эврика!» («Открыл!»)

Во времена Архимеда уже не ограничивались геометрическими построениями, осуществимыми только с помощью циркуля и линейки. Архимед использовал в своих построениях спираль, а Диоклес (конец 2 в. до н.э.) решил проблему удвоения куба с помощью введенной им кривой, получившей название циссоиды.

В александрийский период арифметика и алгебра рассматривались независимо от геометрии. Греки классического периода имели логически обоснованную теорию целых чисел, однако александрийские греки, восприняв вавилонскую и египетскую арифметику и алгебру, во многом утратили уже наработанные представления о математической строгости. Живший между 100 до н.э. и 100 н.э. Герон Александрийский трансформировал значительную часть геометрической алгебры греков в откровенно нестрогие вычислительные процедуры. Однако, доказывая новые теоремы евклидовой геометрии, он по-прежнему руководствовался стандартами логической строгости классического периода.

Первой достаточно объемистой книгой, в которой арифметика излагалась независимо от геометрии, было Введение в арифметику Никомаха (ок. 100 н.э.). В истории арифметики ее роль сравнима с ролью Начал Евклида в истории геометрии. На протяжении более 1000 лет она служила стандартным учебником, поскольку в ней ясно, четко и всеобъемлюще излагалось учение о целых числах (простых, составных, взаимно простых, а также о пропорциях). Повторяя многие пифагорейские утверждения, Введение Никомаха вместе с тем шло дальше, так как Никомах видел и более общие отношения, хотя и приводил их без доказательства.

Знаменательной вехой в алгебре александрийских греков стали работы Диофанта (ок. 250). Одно из главных его достижений связано с введением в алгебру начал символики. В своих работах Диофант не предлагал общих методов, он имел дело с конкретными положительными рациональными числами, а не с их буквенными обозначениями. Он заложил основы т.н. диофантова анализа - исследования неопределенных уравнений.

Высшим достижением александрийских математиков стало создание количественной астрономии. Гиппарху (ок. 161-126 до н.э.) мы обязаны изобретением тригонометрии. Его метод был основан на теореме, утверждающей, что в подобных треугольниках отношение длин любых двух сторон одного из них равно отношению длин двух соответственных сторон другого. В частности, отношение длины катета, лежащего против острого угла А в прямоугольном треугольнике, к длине гипотенузы должно быть одним и тем же для всех прямоугольных треугольников, имеющих один и тот же острый угол А. Это отношение известно как синус угла А. Отношения длин других сторон прямоугольного треугольника получили название косинуса и тангенса угла А. Гиппарх изобрел метод вычисления таких отношений и составил их таблицы. Располагая этими таблицами и легко измеримыми расстояниями на поверхности Земли, он смог вычислить длину ее большой окружности и расстояние до Луны. По его расчетам, радиус Луны составил одну треть земного радиуса; по современным данным отношение радиусов Луны и Земли составляет 27/1000. Гиппарх определил продолжительность солнечного года с ошибкой всего лишь в 61/2 минуты; считается, что именно он ввел широты и долготы.

Греческая тригонометрия и ее приложения в астрономии достигли пика своего развития в Альмагесте египтянина Клавдия Птолемея (умер в 168 н.э.). В Альмагесте была представлена теория движения небесных тел, господствовавшая вплоть до 16 в., когда ее сменила теория Коперника. Птолемей стремился построить самую простую математическую модель, сознавая, что его теория - всего лишь удобное математическое описание астрономических явлений, согласованное с наблюдениями. Теория Коперника одержала верх именно потому, что как модель она оказалась проще.

Упадок Греции. После завоевания Египта римлянами в 31 до н.э. великая греческая александрийская цивилизация пришла в упадок. Цицерон с гордостью утверждал, что в отличие от греков римляне не мечтатели, а потому применяют свои математические знания на практике, извлекая из них реальную пользу. Однако в развитие самой математики вклад римлян был незначителен. Римская система счисления основывалась на громоздких обозначениях чисел. Главной ее особенностью был аддитивный принцип. Даже вычитательный принцип, например, запись числа 9 в виде IX, вошел в широкое употребление только после изобретения наборных литер в 15 в. Римские обозначения чисел применялись в некоторых европейских школах примерно до 1600, а в бухгалтерии и столетием позже.

1.4 Индия

Преемниками греков в истории математики стали индийцы. Индийские математики не занимались доказательствами, но они ввели оригинальные понятия и ряд эффективных методов. Именно они впервые ввели нуль и как кардинальное число, и как символ отсутствия единиц в соответствующем разряде. Махавира (850 н.э.) установил правила операций с нулем, полагая, однако, что деление числа на нуль оставляет число неизменным. Правильный ответ для случая деления числа на нуль был дан Бхаскарой (р. в 1114), ему же принадлежат правила действий над иррациональными числами. Индийцы ввели понятие отрицательных чисел (для обозначения долгов). Самое раннее их использование мы находим у Брахмагупты (ок. 630). Ариабхата (р. 476) пошел дальше Диофанта в использовании непрерывных дробей при решении неопределенных уравнений.

Наша современная система счисления, основанная на позиционном принципе записи чисел и нуля как кардинального числа и использовании обозначения пустого разряда, называется индо-арабской. На стене храма, построенного в Индии ок. 250 до н.э., обнаружено несколько цифр, напоминающих по своим очертаниям наши современные цифры.

Около 800 индийская математика достигла Багдада. Термин «алгебра» происходит от начала названия книги Аль-джебр ва-л-мукабала (Восполнение и противопоставление), написанной в 830 астрономом и математиком аль-Хорезми. В своем сочинении он воздавал должное заслугам индийской математики. Алгебра аль-Хорезми была основана на трудах Брахмагупты, но в ней явственно различимы вавилонское и греческое влияния. Другой выдающийся арабский математик Ибн аль-Хайсам (ок. 965-1039) разработал способ получения алгебраических решений квадратных и кубических уравнений. Арабские математики, в их числе и Омар Хайям, умели решать некоторые кубические уравнения с помощью геометрических методов, используя конические сечения. Арабские астрономы ввели в тригонометрию понятие тангенса и котангенса. Насирэддин Туси (1201-1274) в Трактате о полном четырехугольнике систематически изложил плоскую и сферическую геометрии и первым рассмотрел тригонометрию отдельно от астрономии.

И все же самым важным вкладом арабов в математику стали их переводы и комментарии к великим творениям греков. Европа познакомилась с этими работами после завоевания арабами Северной Африки и Испании, а позднее труды греков были переведены на латынь.

Так происходила хронология развития математики в древности, позволяющая сегодня производить не вероятные вещи: экономить материальные и человеческие ресурсы, шагнуть в будущее великих космических и технических открытий.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат [27,6 K], добавлен 11.09.2010

  • Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.

    презентация [1,8 M], добавлен 17.12.2010

  • Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".

    реферат [22,5 K], добавлен 09.11.2010

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Развитие математики как теории в школе Пифагора. Планиметрия прямолинейных фигур. Стереометрия, теория арифметической и геометрической пропорций. Открытие несоизмеримых величин. Бесконечность как математическая категория. Период академии, фаза упадка.

    реферат [24,5 K], добавлен 29.03.2010

  • История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.

    реферат [75,8 K], добавлен 09.05.2009

  • История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

    реферат [38,2 K], добавлен 09.10.2008

  • История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.

    контрольная работа [992,3 K], добавлен 27.11.2010

  • Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат [32,6 K], добавлен 06.09.2006

  • Роль математики в современном мире. Основные этапы развития математики. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии. Стили мышления.

    реферат [25,8 K], добавлен 08.02.2009

  • Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.

    презентация [1,6 M], добавлен 16.05.2012

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

  • Общая характеристика математической культуры древних цивилизаций. Основные хронологические периоды зарождения и развития математики. Особенности математики в Египте, Вавилоне, Индии и Китае в древности. Математическая культура индейцев Мезоамерики.

    презентация [16,3 M], добавлен 20.09.2015

  • Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.

    презентация [124,5 K], добавлен 17.05.2012

  • Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.

    презентация [2,4 M], добавлен 20.09.2015

  • Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

    реферат [104,5 K], добавлен 12.03.2004

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

  • Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.

    курсовая работа [347,2 K], добавлен 12.09.2009

  • Достижения древнеегипетской математики. Источники, по которым можно судить об уровне знаний древних египтян. Задачи на арифметическую и геометрическую прогрессии, нахождение числа Пи, подчёркивают практический и теоретический характер древней математики.

    реферат [165,8 K], добавлен 14.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.