Применение рядов в приближенных вычислениях

Рассмотрение достаточных условий разложимости функции в ряд Тейлора. Изучение и анализ процесса применения рядов в приближенных вычислениях. Определение разложения некоторых элементарных функций в ряд Маклорена. Исследование применения степенных рядов.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 12.05.2023
Размер файла 49,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕСПУБЛИКА УЗБЕКИСТАН МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНОГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

НАВОИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНО ТЕХНОЛОГИЧЕСКОЙ УНИВЕРСИТЕТ

ЗАОЧНОЕ ОТДЕЛЕНИЕ

Контрольная работа

Тема: «Применение рядов в приближенных вычислениях»

Навоий-2023

План

1. Постановка задачи. Ряд Тейлора

2. Достаточные условия разложимости функции в ряд Тейлора

3. Разложение в степенные ряды основных элементарных функций

4. Применение рядов в приближенных вычислениях

Заключение

Список литературы

1. Постановка задачи. Ряд Тейлора

В теории функциональных рядов центральное место занимает раздел, посвященный разложению функции в ряд.

Таким образом, ставится задача: по заданной функции требуется найти такой степенной ряд

,

который на некотором интервале сходился и его сумма была равна , т.е.

= ..

Эта задача называется задачей разложения функции в степенной ряд.

Необходимым условием разложимости функции в степенной ряд является её дифференцируемость бесконечное число раз - это следует из свойств сходящихся степенных рядов. Такое условие выполняется, как правило, для элементарных функций в их области определения.

Итак, предположим, что функция имеет производные любого порядка. Можно ли её разложить в степенной ряд, если можно, то как найти этот ряд? Проще решается вторая часть задачи, с неё и начнем.

Допустим, что функцию можно представить в виде суммы степенного ряда, сходящегося в интервале, содержащем точку х0:

= .. (*)

где а012,,...,ап,... - неопределенные (пока) коэффициенты.

Положим в равенстве (*) значение х = х0, тогда получим

.

Продифференцируем степенной ряд (*) почленно

= ..

и полагая здесь х = х0, получим

.

При следующем дифференцировании получим ряд

= ..

полагая х = х0, получим, откуда .

После п -кратного дифференцирования получим

Полагая в последнем равенстве х = х0, получим , откуда

Итак, коэффициенты найдены

, , , …, ,….,

подставляя которые в ряд (*), получим

Полученный ряд называется рядом Тейлора для функции .

Таким образом, мы установили, что если функцию можно разложить в степенной ряд по степеням (х - х0), то это разложение единственно и полученный ряд обязательно является рядом Тейлора.

Заметим, что ряд Тейлора можно получить для любой функции, имеющей производные любого порядка в точке х = х0. Но это еще не означает, что между функцией и полученным рядом можно поставить знак равенства, т.е. что сумма ряда равна исходной функции. Во-первых, такое равенство может иметь смысл только в области сходимости, а полученный для функции ряд Тейлора может и расходиться, во-вторых, если ряд Тейлора будет сходиться, то его сумма может не совпадать с исходной функцией.

2. Достаточные условия разложимости функции в ряд Тейлора

Сформулируем утверждение, с помощью которого будет решена поставленная задача.

Если функция в некоторой окрестности точки х0 имеет производные до (n+1)-го порядка включительно, то в этой окрестности имеет место формула Тейлора

где Rn(х)-остаточный член формулы Тейлора - имеет вид (форма Лагранжа)

где точка о лежит между х и х0.

Отметим, что между рядом Тейлора и формулой Тейлора имеется различие: формула Тейлора представляет собой конечную сумму, т.е. п - фиксированное число.

Напомним, что сумма ряда S(x) может быть определена как предел функциональной последовательности частичных сумм Sп(x) на некотором промежутке Х:

.

Согласно этому, разложить функцию в ряд Тейлора означает найти такой ряд, что для любого х X

Запишем формулу Тейлора в виде, где

.

Заметим, что определяет ту ошибку, которую мы получаем, заменяй функцию f(x) многочленом Sn(x).

Если , то , т.е. функция разлагается в ряд Тейлора. И наоборот, если , то .

Тем самым мы доказали критерий разложимости функции в ряд Тейлора.

Для того, чтобы в некотором промежутке функция f(х) разлагалась в ряд Тейлора, необходимо и достаточно, чтобы на этом промежутке , где Rn(x) - остаточный член ряда Тейлора.

С помощью сформулированного критерия можно получить достаточные условия разложимости функции в ряд Тейлора.

Если в некоторой окрестности точки х0 абсолютные величины всех производных функции ограничены одним и тем же числом М ? 0, т.е.

, то в этой окрестности функция разлагается в ряд Тейлора.

Из вышеизложенного следует алгоритм разложения функции f(x) в ряд Тейлора в окрестности точки х0:

1. Находим производные функции f(x):

f(x), f'(x), f”(x), f'”(x), f(n) (x),…

2. Вычисляем значение функции и значения её производных в точке х0

f(x0), f'(x0), f”(x0), f'”(x0), f(n) (x0),…

3. Формально записываем ряд Тейлора и находим область сходимости полученного степенного ряда.

4. Проверяем выполнение достаточных условий, т.е. устанавливаем, для каких х из области сходимости, остаточный член Rn(x) стремится к нулю при или .

Разложение функций в ряд Тейлора по данному алгоритму называют разложением функции в ряд Тейлора по определению или непосредственным разложением.

3. Разложение в степенные ряды основных элементарных функций

Частный случай ряда Тейлора при х0 =0

называемся рядом Маклорена для функции f(x).

Найдем разложение некоторых элементарных функций в ряд Маклорена.

Пример

Разложить в ряд Маклорена функцию .

Решение.

Для решения задачи будем использовать алгоритм, сформулированный выше. Так как требуется разложить функцию в ряд Маклорена, следовательно, будем искать разложение в окрестности точки х0 = 0.

Найдем значение функции в точке х0 =0, производные функции до п -го порядка и их значения при х0 = 0:

Запишем формально ряд Маклорена по формуле

,

получим

.

Заметим, что получили рад по нечетным степеням, так как коэффициенты при четных степенях (когда п - четное число) равны нулю.

Найдем область сходимости полученного ряда, для этого составим ряд из абсолютных величин членов ряда:

и применим к нему признак Д'Аламбера.

Так как величина предела не зависит от х и меньше единицы при любом х, то ряд сходится при всех значения, значит, область сходимости ряда х (-,+).

Проверим выполнение достаточных условий. Очевидно, что

для п = 0,1,2,... и для любых х,

значит, функция разлагается в свой ряд Маклорена на всей числовой оси, т.е.

при х (-,+).

В рассмотренном примере для определения коэффициентов разложения функции в степенной ряд в окрестности точки х0=0 мы последовательно дифференцировали функцию до тех пор, пока не смогли вывести формулу для п-ой производной, и находили значения производных в данной точке. Затем выясняли, для каких х выполняются достаточные условия разложимости функции в ряд. Часто эти шаги приводят к громоздким вычислениям. Эти трудности иногда можно обойти, используя утверждение о том, что полученное любым способом разложение функции в степенной ряд будет её разложением в ряд Тейлора. Поэтому, чтобы получить разложение функции в степенной ряд, можно использовать уже известные разложения элементарных функций ряд Маклорена, применяя к ним правила сложения, умножения рядов и теоремы об интегрировании и дифференцировании степенных рядов.

Например, разложение функции f(x)=cosx можно получить, продифференцировав почленно разложение в ряд Маклорена функции f(x) = sinx.

,

при х (-,+).

Аналогично, используя алгоритм разложения и теоремы об интегрировании и дифференцировании степенных рядов, можно получить разложения в ряд Маклорена следующих элементарных функций:

при х (-,+);

,

если т?.0, или т -1, то область сходимости х (-1;1),

если -1< т<0, то область сходимости х (-1;1].

Такое разложение называется биномиальным рядом. В частности, полагая в последнем разложении т = -1, получим

, х (-1;1).

Заменяя в этом разложении х на выражение (-х), получим

, при х (-1;1).

Используя теорему об интегрировании степенных рядов и применяя её к разложению в ряд Маклорена функции, получим

при х (-1;1].

Заменяя в разложении функции переменную х на выражение и интегрирую, получим

, при х [-1;1].

Используя биномиальный ряд- разложение в ряд Маклорена функции , полагая , заменяя х на выражение и интегрируя, получим

, при х (-1;1).

4. Применение рядов в приближенных вычислениях

Степенные ряды имеют самые разнообразные приложения. С их помощью вычисляют с заданной степенью точности значения функций, пределов функций, определенных интегралов, находят приближенные решения дифференциальных уравнений.

Остановимся на применении степенных рядов к приближенным вычислениям определенных интегралов.

Многие определенные интегралы, получающиеся при решение практических задач, не могут быть вычислены с помощью формулы Ньютона-Лейбница, поскольку применение этой формулы связано с нахождением первообразной, которая не всегда выражается в элементарных функциях.

Если, однако, подынтегральная функция разлагается в степенной ряд, а отрезок интегрирования входит в область сходимости этого ряда, то возможно приближенное вычисление интеграла с любой заданной точностью.

Пусть требуется вычислить приближенно определенный интеграл с заданной точностью е.. Для этого необходимо:

-подынтегральную функцию разложить в степенной ряд, указав область сходимости;

-убедившись, что отрезок интегрирования [a,b] входит в область сходимости ряда, проинтегрировать обе части этого равенства, причем правую часть проинтегрировать почленно. В результате, в простейших случаях, получается знакочередующийся числовой ряд, удовлетворяющий условиям теоремы Лейбница, т.е. сходящийся ряд;

- в качестве приближенного значения интеграла берем значение частичной суммы Sn, число п определяется из условия, что ошибка при замене суммы ряда его частичной суммой по абсолютной величине не превосходит первого из отброшенных членов ряда.

Пример

Вычислить приближенно интеграл с точностью е=0,1.

Решение.

Данный интеграл относится к неберущимся интегралам. Однако подынтегральная функция разлагается в степенной ряд. Используем известное разложение в ряд Маклорена

при t (-,+);

Полагая t = -х2, получим разложение подынтегральной функции в степенной ряд тейлор приближенный вычисление

при х (-,+);

Так как отрезок интегрирования [0;1] входит в область сходимости, то в этих пределах можно проинтегрировать обе части последнего равенства (ряд интегрируем почленно):

Получили числовой знакочередующийся ряд, удовлетворяющий условиям теоремы Лейбница. Так как модуль четвертого члена ряда меньше заданной точности е = 0,1, т.е. , значит, членами ряда, начиная с четвертого, можно пренебречь. Таким образом, заданная точность обеспечивается первыми тремя членами ряда, т.е.

.

Пример

Вычислить приближенно интеграл с точностью е=0,0001.

Решение.

Используя биномиальное разложение функции (1+t)m, полагая в нем и ,получим разложение подынтегральной функции в степенной ряд

при .

Так как отрезок интегрирования [0; 0,25] входит в область сходимости, то обе части последнего равенства можно проинтегрировать (правую часть почленно) по заданному отрезку, в результате получим

Заметим, что уже третий член ряда по абсолютной величине не превосходит заданной точности е = 0,0001, т.е. .

Следовательно, для обеспечения заданной точности е достаточно взять первых два члена полученного числового ряда.

.

Заключение

С помощью рядов можно вычислить значения тригономегричеких функций, логарифмов чисел, корней, определенных интегралов.

Значения тригонометрических функций (синуса и косинуса) можно вычислить с помощью их разложений в степенные ряды.

После изучения основных понятий функциональных и степенных рядов, задачи разложения функций в ряды переходим к обширной группе приложений рассматриваемой темы. К основным заданиям, которые часто встречаются на практике, относятся следующие:

- приближённое вычисление значения функции с помощью ряда;

- приближённое вычисление определённого интеграла с помощью ряда;

- нахождение частного решения ДУ приближённо с помощью ряда.

На данном уроке мы рассмотрим первую, наиболее простую задачу, для решения которой потребуются самые элементарные знания о рядах, таблица разложений функций в степенные ряды и микрокалькулятор. Как вариант, пойдёт Эксель (если умеете управляться с его функциями). Вычислительные задачи требуют повышенной концентрации внимания, поэтому к изучению статьи рекомендую подойти в хорошей физической форме и со свежей головой:

Существует 2 типа рассматриваемой задачи, с которыми мы на самом деле уже сталкивались ранее, в частности при вычислении интеграла по формуле трапеций и методом Симпсона.

Список литературы

1. Богомолов Н.В. Практические занятия по математике: учеб. Пособие для техникумов. - 3-е изд., перераб. и доп. - М.: Высш. Шк., 1990. -495 с.: ил.

2. Воробьев Н.Н. Теория рядов. - 4 издание, перераб. и доп. - М.: «Наука», 1979. - 408 с.

3. Письменный Д.Т. Конспект лекций по высшей математике. 2 часть. -М.: Рольф, 2000. - 256 с.: с ил.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности применения степенных рядов для вычислений с различной степенью точности значений функций и определенных интегралов. Рассмотрение примеров решения ряда задач этим математическим методом с условием принятия значений допустимой погрешности.

    презентация [68,4 K], добавлен 18.09.2013

  • Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.

    курсовая работа [1,3 M], добавлен 21.05.2019

  • Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.

    реферат [89,3 K], добавлен 08.06.2010

  • Исследование числовых рядов на сходимость. Область сходимости для разных степенных рядов. Разложение функции в ряд Тейлора. Нормы сеточной функции. Исследование устойчивости разностной схемы для однородного уравнения. Совокупность разностных уравнений.

    курсовая работа [586,9 K], добавлен 19.04.2011

  • Пределы функций и их основные свойства, операция предельного перехода, бесконечно малые функции. Производная функции, важнейшие правила дифференцирования, правило Лопиталя. Применение дифференциала функции в приближенных вычислениях, построение графиков.

    методичка [335,2 K], добавлен 18.05.2010

  • Производные от функций, заданных параметрически. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Теоремы Коши, Лагранжа и Ролля о дифференцируемых функциях, их геометрическая интерпретация. Правило Лопиталя.

    презентация [334,8 K], добавлен 14.11.2014

  • Основные понятия теории рядов. Методы суммирования расходящихся рядов. Суть метода степенных рядов, теоремы Абеля и Таубера. Метод средних арифметических, взаимоотношение между методами Пуассона-Абеля и Чезаро. Основные методы обобщенного суммирования.

    курсовая работа [288,0 K], добавлен 24.10.2010

  • Определение условий сходимости положительного ряда и описание свойств гармонических рядов Дирихле. Изучение теорем сравнения рядов и описание схемы Куммера для вывода из нее признаков сравнения ряда. Вывод признаков сравнения Даламбера, Раабе и Бертрана.

    курсовая работа [263,6 K], добавлен 14.06.2015

  • Понятия, связанные с рядами и дифференциальными уравнениями. Необходимый признак сходимости. Интегрирование дифференциальных уравнений с помощью рядов. Уравнение Эйри и Бесселя. Примеры интегрирования в Maple. Приближенные вычисления с помощью рядов.

    курсовая работа [263,9 K], добавлен 11.12.2013

  • Метод степенных рядов, применяемый для суммирования расходящихся рядов. Формулировка Пуассона, теорема Абеля. Метод средних арифметических и метод Чезаро. Знакопостоянный ряд натуральных чисел. Взаимоотношение между методами Пуассона-Абеля и Чезаро.

    реферат [313,4 K], добавлен 11.04.2014

  • Ознакомление с математическим аппаратом анализа временных рядов и моделями авторегрессии. Составление простейших моделей авторегрессии стационарных временных рядов. Оценка дисперсии и автоковариации, построение графика автокорреляционной функции.

    лабораторная работа [58,7 K], добавлен 14.03.2014

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

  • Изучение изменений анализируемых показателей во времени как важнейшая задача статистики. Понятие рядов динамики (временных рядов). Числовые значения того или иного статистического показателя, составляющего ряд динамики. Классификация рядов динамики.

    презентация [255,0 K], добавлен 28.11.2013

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа [810,5 K], добавлен 24.11.2013

  • Особенности дифференциального исчисления. Использование правила Коши при разложении в ряд функций cos x и sin x для перемножения рядов. Запись элементов бесконечной матрицы в форме последовательности. Абсолютная сходимость рядов, порождаемых матрицей.

    курсовая работа [1012,0 K], добавлен 06.08.2013

  • Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.

    курсовая работа [107,1 K], добавлен 29.04.2011

  • Изучение некоторых полугрупп, возникающих в статистических вычислениях, их основные свойства. Использование в статистике инвариантной меры, определение общего вида полухарактеров и характеров двух полугрупп, использующихся в анализе на полумодулях.

    курсовая работа [188,6 K], добавлен 08.01.2013

  • Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.

    презентация [110,0 K], добавлен 17.09.2013

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Полухарактеры и характеры. Принцип двойственности Понтрягина. Функциональная характеристика показательной функции. Исследование полугрупп, возникающих в статистических вычислениях. Введение в них инвариантной меры. Операторы Ганкеля и его свойства.

    курсовая работа [241,3 K], добавлен 08.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.