Методы решения СЛАУ. Метод Гаусса

Систематизация знаний о системах линейных уравнений. Метод  Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.

Рубрика Математика
Предмет Математика
Вид презентация
Язык русский
Прислал(а) incognito
Дата добавления 17.05.2023
Размер файла 70,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.

    контрольная работа [397,2 K], добавлен 13.12.2010

  • Метод последовательного исключения неизвестных (метод Гаусса) при решении задач аппроксимации функции в прикладной математике. Метод Гаусса с выбором главного элемента и оценка погрешности при решении системы линейных уравнений, итерационные методы.

    контрольная работа [94,4 K], добавлен 04.09.2010

  • Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.

    контрольная работа [35,1 K], добавлен 24.06.2009

  • Методы решения систем линейных алгебраических уравнений (СЛАУ): Гаусса и Холецкого, их применение к конкретной задаче. Код программы решения перечисленных методов на языке программирования Borland C++ Builder 6. Понятие точного метода решения СЛАУ.

    реферат [58,5 K], добавлен 24.11.2009

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Методы решения систем линейных уравнений. Метод Якоби в матричной записи. Достоинство итерационного метода верхних релаксаций, вычислительные погрешности. Метод блочной релаксации. Разбор метода релаксаций в системах линейных уравнений на примере.

    курсовая работа [209,1 K], добавлен 27.04.2011

  • Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.

    курсовая работа [154,5 K], добавлен 13.11.2012

  • Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.

    лабораторная работа [489,3 K], добавлен 28.10.2014

  • Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.

    курсовая работа [118,4 K], добавлен 04.05.2014

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

  • Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.

    курсовая работа [661,7 K], добавлен 21.10.2013

  • Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.

    контрольная работа [33,2 K], добавлен 05.02.2009

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация [184,4 K], добавлен 21.09.2013

  • Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.

    реферат [111,8 K], добавлен 09.06.2011

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа [220,0 K], добавлен 21.10.2011

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат [532,7 K], добавлен 10.11.2009

  • Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.

    реферат [60,6 K], добавлен 15.08.2009

  • Математические модели явлений или процессов. Сходимость метода простой итерации. Апостериорная оценка погрешности. Метод вращений линейных систем. Контроль точности и приближенного решения в рамках прямого метода. Метод релаксации и метод Гаусса.

    курсовая работа [96,7 K], добавлен 13.04.2011

  • Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.

    контрольная работа [200,4 K], добавлен 17.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.