реферат  Числа Эйлера

Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 ###   ####   #     ##    ##  
    #     #  ##    #     #    
  ##     #    #    ###   ###  
    #   #     #    #  #  #  # 
 ###   #      #     ##    ##  
                              

Введите число, изображенное выше:

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 01.10.2013
Размер файла 249,7 K

Подобные документы

  • Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

    курсовая работа [8,2 M], добавлен 14.09.2015

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация [435,9 K], добавлен 16.12.2011

  • Соотношения между операторами дифференцирования и конечных разностей. Разностная аппроксимация дифференциальных уравнений. Интерполяционные рекуррентные формулы, метод Эйлера. Интерполяция конечными разностями "назад". Рекуррентные формулы Адамса.

    реферат [156,8 K], добавлен 08.08.2009

  • Изобретение Леонардом Эйлером геометрической схемы, с помощью которой можно изобразить отношения между подмножествами. Изучение частного случая кругов Эйлера — диаграммы Эйлера—Венна, изображающей все 2^n комбинаций n свойств (конечную булеву алгебру).

    презентация [595,0 K], добавлен 16.02.2015

  • Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.

    курсовая работа [78,1 K], добавлен 12.06.2010

  • Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.

    контрольная работа [24,8 K], добавлен 09.09.2009

  • Определение понятия антипростого числа как естественного обобщения правильных степеней. Доказательство постулата Бертрана и китайской теоремы об остатках. Исследование натуральных рядов, частоты и последовательности встречаемости антипростых чисел.

    реферат [750,4 K], добавлен 18.01.2011

  • Кватернион как один из самых интересных и приметных представителей гиперкомплексных чисел, его отражение в современных информационных компьютерных интерактивно-игровых технологиях. Алгебра кватернионов над полем R. Сущность и применение тождества Эйлера.

    статья [60,4 K], добавлен 08.12.2009

  • Аналитическое и компьютерное исследования уравнения и модели Ван-дер-Поля. Сущность и особенности применения методов Эйлера и Рунге-Кутта 4 порядка. Сравнение точности метода Эйлера и Рунге-Кутта на одном графике, рисуя фазовые траектории из 1 точки.

    курсовая работа [341,7 K], добавлен 06.10.2012

  • Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.

    контрольная работа [463,0 K], добавлен 17.05.2015

  • Доказательство гипотезы Гольдбаха-Эйлера. Гипотезы о том, что любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел и любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел.

    задача [28,3 K], добавлен 07.06.2009

  • Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.

    презентация [103,1 K], добавлен 29.03.2016

  • Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.

    реферат [183,1 K], добавлен 24.08.2015

  • Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.

    презентация [422,7 K], добавлен 02.06.2013

  • Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

    учебное пособие [659,6 K], добавлен 07.05.2012

  • Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.

    практическая работа [46,1 K], добавлен 06.06.2011

  • Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.

    курсовая работа [111,1 K], добавлен 13.11.2011

  • Представление с помощью кругов Эйлера множественного выражения. Законы и свойства алгебры множеств, упрощение выражений. Система функций, ее возможные базисы. Минимизирование булевой функции. Метод Квайна – Мак-Класки. Определение хроматического числа.

    контрольная работа [375,6 K], добавлен 17.01.2011

  • Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.

    контрольная работа [170,3 K], добавлен 01.04.2010

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.