учебное пособие  Теория вероятностей

Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 ## ##   ######   ######   ## ##       ##    
##   ##  ##       ##   #   ##  ##     ###    
##   ##  ## ##       ##        ##      ##    
 ## ##       ##     ##        ##       ##    
##   ##  ##  ##     ##       ##        ##    
 #   ##  ##  ##     ##      #   ##     ##    
 ## ##     ###      ##     ######     ####   
                                             

Введите число, изображенное выше:

Рубрика Математика
Вид учебное пособие
Язык русский
Дата добавления 29.10.2013
Размер файла 879,2 K

Подобные документы

  • Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.

    реферат [402,7 K], добавлен 03.12.2007

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.

    задача [82,0 K], добавлен 12.02.2011

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа [103,1 K], добавлен 15.06.2012

  • Бесконечное число возможных значений непрерывных случайных величин. Рассмотрение непрерывной случайной величины Х с функцией распределения F(x). Кривая, изображающая плотность вероятности. Определение вероятности попадания на участок a до b через f(x).

    презентация [64,0 K], добавлен 01.11.2013

  • Изучение наиболее типичных алгоритмов решения задач, имеющих вероятностный характер. Ознакомление с элементами комбинаторики, теорией урн, формулой Байеса, способами нахождения дискретных, непрерывных случайных величин. Рассмотрение основ алгебры событий.

    методичка [543,1 K], добавлен 06.05.2010

  • Пространство элементарных событий. Совместные и несовместные события. Плотность распределения вероятностей системы двух случайных величин. Эмпирическая функция распределения. Числовые характеристики случайной функции. Условие независимости двух событий.

    контрольная работа [30,0 K], добавлен 15.06.2012

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка [945,2 K], добавлен 18.06.2012

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат [146,5 K], добавлен 19.08.2015

  • История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.

    контрольная работа [22,6 K], добавлен 20.12.2009

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.

    презентация [1,4 M], добавлен 19.07.2015

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка [328,7 K], добавлен 04.05.2015

  • Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.

    контрольная работа [157,5 K], добавлен 04.02.2012

  • Вычисление вероятности непогашения кредита юридическим и физическим лицом, с помощью формулы Байеса. Расчет выборочной дисперсии, его методика, основные этапы. Определение вероятности выпадания белого шара из трех, взятых наудачу, обоснование результата.

    контрольная работа [419,7 K], добавлен 11.02.2014

  • Элементы линейной алгебры. Дифференциальное и интегральное исчисление функции одной переменной. Биномиальный закон распределения. Комбинаторные формулы. Статистическое определение вероятности. Формула полной вероятности. Дискретные случайные величины.

    творческая работа [686,3 K], добавлен 30.04.2009

  • Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.

    задача [37,9 K], добавлен 19.03.2011

  • Практическиое решение задач по теории вероятности. Задача на условную вероятность. Задача на подсчет вероятностей. Задача на формулу полной вероятности. Задача на теорему о повторении опытов. Задача на умножение вероятностей. Задача на схему случаев.

    контрольная работа [29,7 K], добавлен 24.09.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.